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Abstract 
 

THE USE OF INERTIAL MEASUREMENT UNITS TO PERFORM KINETIC ANALYSES 
OF SPRINT ACCELERATION AND CHANGE OF DIRECTION TASKS 

 
Reed Gurchiek 

B.S. Cumberland University 
 
 

Chairperson:  Dr. Herman van Werkhoven 
 
 

 Background: To further the understanding of the factors most important to accelerative 

running and to allow coaches to apply this knowledge in the field requires an assessment method 

that is accurate, convenient, and comprehensive.  Inertial measurement units (IMUs) are 

becoming more popular in the analysis of human movement and might provide the technology to 

perform a more comprehensive sprint acceleration assessment because of their relatively low 

cost, small size, and ability to measure kinematic and kinetic data.  Their ability to accurately 

estimate kinetic variables related to sprint acceleration performance (i.e., 3-dimensional ground 

reaction force, F) has not been assessed.  Purpose: The purpose of this thesis was three-fold.  

First was to assess the criterion validity of IMU estimates of the magnitude and orientation of F 

during accelerative running tasks by comparison to a force plate.  The second was to determine 

the concurrent validity of a novel IMU-based sprint velocity estimation algorithm.  The third was 

to determine the concurrent validity of IMU estimates of kinetic determinates of sprint 

acceleration performance.  Methods:  Fifteen subjects (12 male, 3 female) volunteered to 

participate in the first study.  Twenty-eight subjects (16 male, 12 female) consisting of both 

collegiate level sprinters and non-sprinters participated in the second and third studies.  For the 
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first study, step averaged, peak, and continuous F estimates were made by a single sacral 

attached IMU and a force plate during the initial push and first step of a linear sprint start as well 

as for the first step of a change of direction task (both to the right and left).  The estimates were 

compared using root mean square error (RMSE), Pearson’s product moment correlation 

coefficient (r), and Bland-Altman 95% limits of agreement (LOA).  For the second and third 

studies, subjects performed three maximal effort 40 m sprints from a four-point stance.  A 

recently validated position-time method along with the proposed IMU method gave estimates of 

maximal, average interval, and continuous sprint velocity (study 2) as well as kinetic 

determinants of sprint performance (study 3).  The error in the IMU estimates was quantified by 

RMSE, r, and LOA.  Results: The results from the first study suggest the IMU method is 

inappropriate for estimation of continuous and peak F (RMSE ≥ 514.67 N), however, step 

averaged estimates were characterized by less error (RMSE ≤ 169.91 N), especially for the linear 

sprint condition (RMSE ≤ 77.32 N).  For the second study, the IMU estimates showed absolute 

percent error between 5.09% and 7.13% and significant (p < 0.01) correlations with reference 

measures (r ≥ 0.79).  Finally, for the third study, the IMU estimates of the kinetic parameters 

most important to evaluating sprint performance were significantly (p < 0.01) correlated with 

reference measures (r ≥ 0.73) and characterized by relatively low bias and low RMSE.  The IMU 

estimates were able to differentiate sprinters from non-sprinters equally as well as the reference 

photocell system.  Conclusion: The results from these studies broaden the scope of IMU 

applications in field-based human movement analysis, especially in the context of sprint 

performance.  Potential sources of error are detailed in each manuscript and provide a foundation 

from which future research may be aimed to improve these methods.
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(Chapters 3, 4, and 5).  Each will be submitted to an international peer-reviewed journal and 

have been formatted according to the IEEE Citation Reference Standard. 
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Chapter 1: Introduction 

 Sprinting bouts during gameplay of many sports are often over such short distances 

that maximal sprinting velocity is never reached [1].  Thus, for these sports, the ability to 

maximally accelerate is arguably of greater value than maximal sprinting velocity.  Many 

factors contribute to an athlete’s accelerative ability that are related to both the orientation 

and the magnitude (𝐹𝑟𝑟𝑟) of the ground reaction force (𝑭) as well as how these values change 

with increasing sprint velocity.  For example, the ability to produce large magnitudes of force 

and forward power (𝑃𝑥, where 𝑥 denotes the forward direction) at high sprinting velocities 

has been related to better sprint acceleration performance [2–4].  The factors related to the 

orientation of F indicate the runner’s ability to apply forces such that the forward component 

of 𝑭 (𝐹𝑥) is maximized while maintaining a sufficient vertical component (𝐹𝑧) [2, 3, 5].  This 

has been shown to be advantageous independent of 𝐹𝑟𝑟𝑟 [2, 5–9]. The ratio of force (RF), 

expressed as the ratio of the average 𝐹𝑥 to the average 𝐹𝑟𝑟𝑟  for one step, is an index that has 

been used to assess an athlete’s ability to optimally orient F [2, 3, 5, 10].  Greater RFs are 

characteristic of athletes with greater accelerative ability [2, 3].  Further, it is important that 

an athlete maintain the ability to generate large magnitudes of 𝐹𝑥 and thus also a high RF 

throughout a maximal sprint, which has been assessed using the slope of the 𝐹𝑥-velocity 

(𝑠𝑠𝑠) and the RF-velocity curve (𝑑𝑑𝑑).  Some research suggests faster sprinters show a less 

negative 𝑑𝑑𝑑 indicating an ability to maintain a more forward oriented 𝑭 with each foot 

contact as sprint velocity increases [3, 5].   

Improving acceleration performance involves targeting weaknesses related to both 

muscular characteristics and sprinting technique.  Identifying weaknesses to target requires 

an accurate assessment method.  F data must be collected for each step during a sprint to 
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calculate the aforementioned kinetic determinants of sprint acceleration performance (i.e., 𝑃𝑥, 

𝐹𝑥, 𝑅𝑅, 𝑑𝑑𝑑, 𝑠𝑠𝑠).  The current methods used to obtain force data during accelerative 

running include multiple sprints over a single force plate [2, 7, 11], instrumented treadmills  

[3, 5, 12], and inverse dynamics with position-time or velocity-time data using equations 

describing sprinting dynamics [13–15].  These techniques have certain limitations and the 

development of a new method that can provide a more comprehensive assessment has been 

the focus of recent research. 

 Accelerometers have been used to estimate kinetic data, spatiotemporal data, and 

energy expenditure in various human movement tasks  [16–19].   Thus, accelerometers might 

provide a more convenient and cost effective means to perform kinetic as well as kinematic 

analyses of accelerative running.  Inertial measurement units (IMUs) come equipped with 

accelerometers, gyroscopes, and magnetometers.  Data fusion algorithms are used to combine 

each of these sensor outputs to provide a better estimate of the desired measure [20–23].   

Several studies have validated the use of IMUs to analyze dynamic human movements.  This 

includes accurate estimates of stride and stance durations [24–26], trunk angles [22], and 

velocity [27] during sprinting.  Others have rotated the acceleration vector measured in the 

sensor reference frame such that it is expressed in the world reference frame to accurately 

assess center of mass kinematics during jumping [28, 29] and walking [30] tasks.  If the 

orientation of an IMU relative to a force plate is known, then IMU estimates of F using 

Newton’s 2nd Law may be compared to that measured by the force plate [31].    To the 

author’s knowledge, no studies have assessed the ability of a trunk mounted IMU to perform 

kinetic analyses of accelerative running tasks.  Further, for the method to be fully 

comprehensive it must have the means to accurately estimate sprint velocity.  IMUs have 
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been used to estimate running velocity for constant velocities of relatively low magnitude (≤ 

3.5 m/s) [32], but it would be inappropriate to generalize the application of such a method to 

the acceleration phase of sprinting.  To the author’s knowledge, only one study has 

investigated the use of a single IMU to measure sprint velocity during a 100 m sprint [27].  

However, the details of the algorithms employed were not given. 

Thus, the purpose of this thesis was three-fold.  First, to assess the criterion validity of 

IMU estimates of three-dimensional F compared to a force plate during accelerative tasks.  

Second, to develop and assess the concurrent validity of a novel IMU-based sprint velocity 

estimation algorithm, and third to assess the concurrent validity of IMU estimates of sprint 

performance variables by comparison to a recently validated position-time method.  Chapter 

2 provides a detailed description of the relevant research that provides the rationale to 

conduct the studies.  Chapters 3, 4, and 5 describe the three studies separately, each 

formatted as a separate manuscript.  Finally, the Chapter 6 summarizes the results of the 

studies as they relate to past and potential future research followed by the appendices.
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Chapter 2: Literature Review 

2.1 Current Methodologies Used to Assess Sprint Performance 

The current methodologies used to assess sprint performance do so by providing 

estimates of several factors related to both the magnitude and orientation of the ground reaction 

force (𝑭) and sprint velocity.  The ratio of force (𝑅𝑅), defined as the percentage of the magnitude 

of 𝑭 (𝐹𝑟𝑟𝑟) that is comprised of 𝐹𝑥, has been used as an index of a runner’s ability to orient 𝑭 

such that 𝐹𝑥 is maximized. Greater 𝐹𝑥 and 𝑅𝑅 have been shown to be characteristic of greater 

acceleration ability [2, 3, 5, 6, 33].  The ability to produce high amounts of 𝐹𝑥 and 𝑅𝑅 as sprint 

velocity increases, indicated by the slope of the linear relationship between 𝐹𝑥-𝑣  (𝑠𝑠𝑠) and 𝑅𝑅-

𝑣 (𝑑𝑑𝑑), is also used to characterize the maintenance of optimal technique in the acceleration 

phase of sprinting [2, 3, 5, 14].  Extrapolation of the 𝐹𝑥-𝑣  line to the 𝑥 and 𝑦 intercepts provide 

estimates of the runner’s theoretical maximal velocity (𝑣0) and maximal forward force (𝐹0) 

respectively, which are also included in the current sprint acceleration assessment methodologies 

[2, 12, 15, 34].  The ability to produce large forward forces at greater sprinting velocities is well 

described by forward power (𝑃𝑥) which has also been related to acceleration performance [2, 3, 

5].    

These sprint acceleration performance variables have been identified because of the 

ability to collect the relevant kinetic and kinematic data during the acceleration phase of 

sprinting and relate the variables to performance.  The importance of an accurate measurement 

technique for accelerative running may allow coaches to profile their athletes’ acceleration 

performance based on an objective standard.  This then may be used to design their athletes’ 

programs to target the weaknesses identified by the assessment and to evaluate the effectiveness 

of a program by comparing pre- and post-intervention measures.  Further, an accurate assessment 
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technique allows researchers to study how those variables related to acceleration performance are 

obtained by faster runners such as their relationship with joint kinematics [35], muscular 

activation-deactivation patterns [12, 36, 37], and structural characteristics [38, 39] may be 

determined.  A step-by-step kinetic analysis of accelerative running is necessary to obtain the 

variables related to performance.  Currently, three methods have been used: (1) multiple sprints 

with a single force plate, (2) instrumented torque treadmills (TT) and non-motorized treadmills 

(NMT), and (3) inverse dynamics using position-time and/or velocity-time data and equations 

describing sprinting. 

 Cavagna et al. [11] were perhaps the first to collect kinetic data for each step during a 

sprinting task using force plates.  Their method involved piecing together force data from 

multiple sprints where each sprint measured a different foot contact or set of foot contacts.  

Integration of the force-time curve provided an estimate of the change in velocity obtained over 

the foot contact and the initial velocity before force plate contact was determined using 

photocells. 

This method has since been used by others to assess acceleration performance [2] and as 

a standard of comparison for validation of new measurement techniques [14].  The method used 

in the latter two studies only differ from the original in that the distance of the sprint was 40 m 

(Cavagna et al. [11]:56 m) and high speed video was used to determine initial velocity as 

opposed to photocells.  Although this method is currently considered the gold standard, it is not 

without its limitations.  The method assumes that the first step of the first sprint has the same 

force application pattern as the first step of every subsequent sprint.  This assumption is not 

trivial because the dependence of the force-application pattern of the second step on that of the 

first step is unknown in these studies and arguably does exist.  Rabita et al. [2] showed high 
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repeatability of the measured data at the sixth step (about 8 m) suggested by low coefficients of 

variation and high intra-class correlation coefficients.  One may argue, however, that the inter-

sprint repeatability of data obtained from the sixth step does not well represent the repeatability 

across the entire sprint.  For example, Hunter et al. [8] had subjects perform multiple sprints over 

a single force plate placed 16 m from the start.  Twenty-eight of the subjects from their study 

showed inter-sprint force application patterns that were different enough to relate the differences 

to kinematic variables.  Samozino et al. [14] did not report any statistical measure of inter-step 

repeatability and in fact acknowledged the possibility of inter-sprint variance in force application 

patterns as a possible contributor to the standard error of the estimate observed for the method to 

which they were comparing.  Thus, unless controlled for, the assumption of negligible step 

specific force application variance may not be made.  Secondly, the method is relatively 

inconvenient given the time it takes to piece together the virtual sprint from multiple bouts and 

the cost of the equipment necessary for the analysis. 

 A single force plate and a single sprinting bout can be used to determine step-by-step 

kinetic data during a sprint if the runner’s displacement relative to the force plate does not 

change as is this case with a treadmill.   Instrumented treadmills are equipped with embedded 

force plates and allow one to obtain multi-step F data during a single sprint.  Motorized 

treadmills maintain a user specified constant running speed and the kinetic variables obtained for 

constant-velocity running bouts have been validated for intra- and inter-individual comparisons 

[40–42].  As long as the belt speed is constant, the belt coordinate frame is an inertial one and 

thus valid F measurements would be expected [42].  However, during accelerative running, the 

belt is a non-inertial reference frame and the previous conclusions cannot be generalized to these 

conditions.  Van Caekenberghe et al. [43] described what they term a “fictitious” force which 
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must be introduced into the kinetic equations for running on an accelerating treadmill belt.  

Briefly, an instrumented treadmill with a person at standstill when the belt is suddenly 

accelerated will register a 𝐹𝑥 due to the belt as opposed to the result of any muscular actions 

within the body.  The hypothesis was confirmed with experimental results [43] and has been 

extended beyond kinetic differences to also include kinematic differences such as joint angles 

and joint velocities between over-ground and treadmill accelerated running [44].  They did, 

however, suggest the differences may be overcome by using torque treadmills (TT).  TT provide 

only enough torque to overcome internal belt friction while the subject provides the forces for 

belt acceleration.  The torque setting for TT is determined by defining that which is necessary to 

overcome static friction of the subject’s body weight on the treadmill [59, 70, 71].  Non-

motorized treadmills (NMT) are similar in that there is no motor causing belt acceleration, but 

different in that belt friction is not compensated for [48].  Thus, compared to traditional 

motorized treadmills, NMT and TT have been used more extensively for sprint assessments [48].  

A treadmill embedded three-dimensional force plate allows direct measurement of F.  A harness 

attached to the runner is anchored to an immovable strut behind the runner at the height of the 

harness attachment [47, 48].  𝐹𝑥 is determined either using a strain gauge attached at the strut 

(when the force plate only gives 𝐹𝑧) [49, 50] or by using the three-dimensional embedded force 

plate [47].  Assuming no relative movement of the subject to the anchoring strut (or wall) the 

force values determined by the sensor are equal to 𝐹𝑥 [48].  A similar method has been used for 

over-ground sprinting where a tricycle anchors a steel rod attached to the runner’s belt [51].  

Simperingham et al. [48] provide an extensive review comparing the NMT and TT measurement 

techniques and their associated validity and reliability.  Particularly important was the finding 

that there has been no assessment of the validity of 𝐹𝑥, 𝐹𝑧, and 𝐹𝑟𝑟𝑟 determined by NMT or TT 
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and neither have been compared to kinetic measurements determined by over-ground running 

with embedded force plates [48]. 

To avoid the shortcomings of the previously described methods, perhaps one should seek 

a technique that allows kinetic data collection for every step during one over-ground sprint.  The 

inverse dynamics approach satisfies these conditions.  Furusawa et al. [13] derived an equation 

describing the velocity-time relationship during sprinting.  The derivation is dependent on two 

assumptions: (1) the sprint is maximal effort and (2) a frictional force exists within the muscle 

proportional to the shortening velocity.  Because the sprint is maximal effort, the force applied 

(F’) is also maximal and, in general, is proportional to the runner’s weight: 

where f is a dimensionless proportional constant.  The frictional force (𝐹𝑓′) is proportional to the 

velocity of the sprint and the runner’s mass: 

where b is in units of time and is necessary for 𝐹𝑓′ to be in units of Newtons (a is used in the 

original paper, but is substituted by b here to avoid confusion with acceleration).  The equation 

of motion relative to mass is thus: 

 

the solution of which is: 

 

 

 𝐹′ = 𝑓𝑓𝑎𝑔 (2.1) 

 
𝐹𝑓′ = −

𝑚
𝑏
𝑑𝑑
𝑑𝑑

 
(2.2) 

 𝑑2𝑥
𝑑𝑡2

= 𝑓𝑎𝑔 −
1
𝑏
𝑑𝑑
𝑑𝑑

 
(2.3) 

 𝑥(𝑡) = 𝑓𝑎𝑔𝑏 �𝑡 − 𝑏 �1 − 𝑒−
𝑡
𝑏��  (2.4) 
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The velocity is determined by the first derivative of position with respect to time: 

and the acceleration by the second derivative: 

In the original study, position-time data (obtained using photocells) were fit to eq. (2.4) to 

find the constants 𝑓𝑎𝑔 and b.  The equation performed relatively well considering the average 

difference between observed and calculated distance was about three inches.  The same constants 

may then be used to determine velocity-time and acceleration-time relationships using eqs. (2.5) 

and (2.6) respectively.   

One can see as 𝑡 → ∞: 

Thus, as proposed by the authors, 𝑓𝑎𝑔𝑏 represents the theoretical maximal velocity (𝑣𝑚) should 

fatigue never set in.  Further, let 𝑡 = 𝑏 and 𝑓𝑎𝑔𝑏 = 𝑣𝑚, then: 

and thus: 

The value of b then represents the time it takes for the velocity to reach 63% of 𝑣𝑚, at which the 

authors consider 𝑣𝑚 to have been “practically attained” (pg. 34).  The equation has been used in 

other studies using velocity-time data obtained with a radar gun positioned behind the runner at 

the height of the COM where the time constant (𝜏) is substituted for b [14, 50–52].  Given this  

 

 

 𝑑𝑑
𝑑𝑑

= 𝑓𝑎𝑔𝑏 �1 − 𝑒−
𝑡
𝑏�  (2.5) 

 𝑑2𝑥
𝑑𝑡2

=
𝑓𝑎𝑔𝑏
𝑏

�𝑒−
𝑡
𝑏� 

(2.6) 

 𝑑𝑑
𝑑𝑑𝑡→∞

=𝑓𝑎𝑔𝑏  (2.7) 

 𝑣(𝑏) = 𝑣𝑚(1 − 𝑒−1)  (2.8) 

 𝑣(𝑏) ≈ (0.63)𝑣𝑚 (2.9) 
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substitution, the equations change according to: 

A bi-exponential curve has been used to account for the effects of fatigue [53]: 

where k2 and k1 represent the constants relating the decreasing acceleration due to fatigue and 

during the initial acceleration respectively.  Others substitute 1
𝜏1

 = k1 and 1−𝑣𝑚
𝜏2

 = k2 where 𝜏1 and 

𝜏2 represent the time constants for acceleration and deceleration during a 100 m sprint [46, 54].  

Then: 

A review of the reliability and validity of radar measures to determine speed by Simperingham et 

al. [48] determined that intraday reliability and inter-day reliability and validity have been 

established with the exception of the first 5 m of the sprint.  The forward lean of the trunk has 

been used to explain the discrepancy of the latter [55].  Other observed irregularities have been 

attributed to segmental movements [50]. 

 By inverse dynamics and using eq. (2.12) along with knowledge of the runner’s mass, 

one may estimate kinetic data.  Morin and Seve [46] estimated 𝐹𝑥 during a 100 m sprint using 

velocity-time data obtained by a radar gun.  These forces were compared to those on an 

instrumented treadmill to determine differences in treadmill vs. over-ground running.  Although, 

not validated prior to this study, the method has recently been validated by Samozino et al. [14].  

 𝑥(𝑡) = 𝑣𝑚 �𝑡 + 𝜏𝑒−
𝑡
𝜏� − 𝑣𝑚𝜏 (2.10) 

 𝑣(𝑡) = 𝑣𝑚 �1 − 𝑒−
𝑡
𝜏�  (2.11) 

 𝑎(𝑡) = �𝑣𝑚
𝜏
� 𝑒−

𝑡
𝜏  (2.12) 

 𝑣(𝑡) = 𝑣𝑚(𝑒−𝑘2𝑡 − 𝑒−𝑘1𝑡) (2.13) 

 
𝑣(𝑡) = 𝑣𝑚 �𝑒

𝑡𝑣𝑚−𝑡
𝜏2 − 𝑒−

𝑡
𝜏1� 

(2.14) 
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They compared the variables important to acceleration performance determined by the inverse-

dynamics method to the multiple sprints, single force plate method.  Position-time data obtained 

by photocells and velocity-time data obtained by a radar gun were used to assess validity and 

inter-trial reliability respectively.  The constants 𝑣𝑚 and 𝜏 were found by fitting the position-time 

and velocity-time data to eqs. (2.10) and (2.11) respectively.  Then it was possible to determine 

acceleration (𝑎) using eq. (2.12) and 𝐹𝑥 by Newton’s 2nd Law: 

 

  where the drag force (FD) was estimated by: 

The constants in eq. (2.16) were estimated by [56]: 

where 𝜌0 = 1.293 kg/m is the air density of 760 Torr and 273 K, Pb is the barometric pressure (in 

Torr), T° is the air temperature in °C, and h and m are the runner’s height and mass.  𝐹𝑧 was 

estimated to be the subject’s bodyweight allowing the estimation of 𝐹𝑟𝑟𝑟 and thus 𝑅𝑅: 

Estimates of 𝑠𝑠𝑠, 𝐹0, 𝑣0, and 𝑑𝑑𝑑 were made as well as maximal power determined by both the  

 

 𝑚𝑚 =  𝐹𝑥 − 𝐹𝐷 (2.15) 

 
𝐹𝐷 =  

1
2
𝐶𝐶𝐶(𝑣𝑥 − 𝑣𝑎𝑎𝑎)2 

(2.16) 

 𝜌 = 𝜌0 ∙
𝑃𝑃
760

∙ 273
273+𝑇°

  (2.17) 

 𝐴 = 𝐴𝐴 = (0.2025ℎ0.725𝑚0.425)(0.266) (2.18) 

 𝐶 = 0.9  (2.19) 

 𝐹𝑟𝑟𝑟 = �𝐹𝑥2 + 𝐹𝑧2  (2.20) 

 
𝑅𝑅 =

𝐹𝑥
𝐹𝑟𝑟𝑟

 
(2.21) 
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apex of the power-velocity curve and: 

The method was considered valid and reliable given the low standard error of the estimates, low 

absolute bias, and narrow 95% limits of agreement from Bland & Altman analysis.  The method 

has since been used to investigate mechanisms of injury and  the effects of injury on sprint 

mechanics [57, 58].  Despite the close fit of sprint performance variables determined by the 

multiple sprints, single force plate method, the inverse-dynamics method may not be considered 

a fully comprehensive assessment.  The authors acknowledge the lack of the ability of the 

method to determine any bilateral asymmetry that may be present.  Further, other kinematic 

variables of interest cannot be determined (joint angles, flight times, contact times, stride 

frequency, etc.).  Thus, motivation exists for the development of a novel method that satisfies 

matters of convenience (time and budget), validity, reliability, and comprehensive profiling of 

acceleration performance.  Accelerometers used in inertial measurement units may provide the 

technology to do so. 

2.2 Accelerometers 

Definitions and theory 

 Accelerometers measure acceleration along one, two, or three axes.  Accelerometer 

hardware used in human movement analysis is usually based on either strain gauge, 

piezoresistive, capacitive, or piezoelectric technology [59]. The circuit for capacitive 

accelerometers consists of a silicon mass anchored to a frame by an elastic structure.  The mass 

has attached conductive fingers aligned between frame attached conductive fingers subject to a 

high frequency square wave source voltage.  The output voltage, taken at the mass attached 

conductive finger, allows one to determine the differential capacitance of the conductive finger 

 𝑃𝑚𝑚𝑚 = 𝐹0𝑣0
4

   (2.22) 
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configuration.  When the frame is accelerated, the elastic structure attaching the mass to the 

frame is deformed by the inertia of the mass resulting in relative movement between the mass 

attached conductive finger and those attached to the frame.  This changes the differential 

capacitance which is manifest by the change in the measured output voltage.  The acceleration 

magnitude and direction is given by the sign of the measured output voltage along with 

knowledge of the square wave excitation source, spring constant of the elastic anchoring 

structure, and the mass of the silicon structure [60].  Three single axis accelerometers can be 

aligned orthogonally within the unit to provide the acceleration in three dimensions.  Other units 

use a single three axis accelerometer where the three dimensional acceleration is determined by 

orthogonal alignment of additional conductive fingers about those of the mass.  

Biomechanics Applications 

 The use of accelerometers in biomechanics has been around for over 50 years  [61, 62].  

In 1963, Cavagna et al. [63] showed the use of accelerometers to calculate external work in 

walking.  Today, accelerometers serve as the functional unit in activity monitors to estimate 

physical activity and energy expenditure [19, 64, 65].  Accelerometers have also been used to 

assess characteristic spatiotemporal events, postural control, and segment orientations all with 

methods that vary with the type and placement location of the accelerometer during walking 

[59].  Modern smartphones come equipped with several inertial sensors including accelerometers 

to perform various functions within the phone (e.g., gaming, display orientation, etc.).  This has 

led to the investigation of their use in human movement analysis [66, 67] for estimation of step 

cadence, velocity, and step length [68–70].  The result has been the development of applications 

for clinical purposes such as the assessment of the 6-minute walk test [70], fall detection [71, 

72], and pedometer counts [73].   
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 Accelerometers have also been used to assess more dynamic movement tasks 

characteristic of those in sport.  Their use in this context is attractive because it might provide a 

convenient means of monitoring player load and performance assessment.  For example, 

accelerometers have shown the ability to deterct running fatigue [74] and contact times during 

steady state jogging, running, and sprinting, as well as the first, third, and fifth steps of 

accelerative running [75].   Other studies have estimated running speed in free living conditions 

[76], spatiotemporal data of ice hockey skating [77] and sprinting [78], biomechanical variables 

of countermovement and drop jumps [31], joint angles [79], and kinematics of the barbell high 

pull [80]. 

 Kinetic data have also been estimated using accelerometers during human movement, 

although to a much less extent.  Knowledge of the mass of a body and its acceleration allows the 

prediction of the force that caused the motion using Newton’s 2nd Law in eq. (2.3).  Perhaps the 

first studies to investigate the use of accelerometers in predicting forces and loads during human 

movement were by Janz [81] and Garcia et al. [19].  Both assessed the ability of different activity 

monitors, using activity counts, to predict kinetic variables during walking, running, and jumping 

activities.  Others have used the raw acceleration output to determine resultant acceleration and 

its relationship with kinetic variables [82].  Rowlands and Stiles [82] showed significant 

relationships with average 𝐹𝑟𝑟𝑟 and peak loading rate, but not peak impact force during walking, 

running, and jumping at different intensities. Neugebauer et al. [17] developed a prediction 

model for peak 𝐹𝑧 based on preliminary data dependent on accelerometer measured average 

resultant acceleration over 15 second epochs, centered mass (difference between subject’s mass 

and a reference average mass specific to the subject’s sex), type of locomotion (walk or run), 

interaction between raw acceleration and locomotion type, and sex.  The results are limited, 
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however, in that the model assumes steady state activity and only peak 𝐹𝑧 predictability was 

assessed.  Another prediction model was developed by Neugebauer et al. [16] using raw 

accelerations as opposed to averaged epochs allowed the prediction of peak braking forces in 

addition to peak 𝐹𝑧 during walking and running.  These two prediction models by Neugebauer et 

al. [17] and Neugebauer et al. [16] are dependent on curve fitting accelerometer data with force 

plate data from preliminary trials as opposed to using Newton’s 2nd Law.  The latter may be more 

generalizable and has been used more recently for kinetic analysis of hopping and heel-rise tests 

[83], the development of a smartphone application  to estimate kinetic and kinematic variables 

during a sit-to-stand task [84], and to estimate eccentric and concentric forces during drop jumps 

and countermovement jumps [31].  The first two of these three studies suggest valid estimates 

given high correlation coefficients.  The last, however, found significant differences between 

force plate and accelerometer measures with high systematic bias.  They attributed the error to 

the fact that the orientation of the sensor relative to the world frame was changing during the 

jumping task.  

Limitations 

Accelerometers suffer in their ability to accurately predict kinetic data during human 

movement for several reasons.  First, accelerometers, similar to most electrical devices, are 

accompanied by noise and bias.  Although these errors may be relatively small, if the velocity or 

position of a body is calculated by single or double integration of the acceleration respectively, 

the errors become relatively large, a phenomenon known as drift [85].  Second, the 

accelerometer can only provide acceleration information about the specific body part to which it 

is attached.  Placement of the accelerometer near the COM (sacrum, hip, etc.) has been used in 

previous studies where the accelerometer is assumed to represent the COM [16, 17, 31, 82].  
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However, this assumes the COM is fixed relative to the body which is not true when the limbs 

move.   F is the result of the net joint torques about all joints within the body [18].  For example, 

during a countermovement jump with an arm swing the COM would be vertically displaced 

relative to the body for which a vertical force must be responsible [86].  This would be manifest 

immediately by the force plate, but not a sacrum mounted accelerometer until the vertical 

impulse causes vertical displacement of the temporarily fixed COM position.  Studies examining 

the use of accelerometers in analyzing jumps have, as a result, prevented arm swinging [87].  

This shortcoming, however, has not prevented the finding of significant relationships between 

accelerometer outputs and 𝐹𝑟𝑟𝑟 during human movement tasks [16, 17, 29, 82].  Finally, the three 

dimensional components of F in the world frame (W) cannot be determined by accelerometers 

alone.  Other studies have found accurate estimates of 𝐹𝑟𝑟𝑟 during various human movement 

tasks, but none have decomposed the vector into component parts using an algorithm that is 

generalizable to any task.  The accelerometer measures accelerations along each of its three 

orthogonal axes relative to the sensor’s reference frame (S).  In order to know these values in 

terms of W one must know the orientation of S relative to W [31].  If the relative sensor 

orientation is initially known and an attempt is made for this orientation to be held constant 

throughout the movement  [80] then the accelerations about the sensor’s three axes are 

representative of the same in W.  However, maintaining a constant orientation would be difficult 

in a very dynamic task such as sprinting.  Accelerometers may provide inclination angles of S 

relative to W during static positions.  However, an accelerometer cannot provide angular 

orientation relative to W about the vertical axis (heading) and are independently not an accurate 

inclinometer during human movement when the accelerometer is less frequently in a static 

position.  Inertial measurement units combine multiple sensors and fuse their data in order to 
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compensate for relative movement between the sensor and world reference frames potentially 

allowing more accurate estimates of kinetic variables using accelerometers [31]. 

2.3 Inertial Measurement Units 

Definitions and theory 

 Inertial measurement units (IMUs) contain built in accelerometers, gyroscopes, and 

magnetometers.  Gyroscopes are used to measure angular rate.  Their design is similar to that of 

the accelerometer in that they are capacitive sensors and the output is due to movement of a mass 

anchored to a frame by elastic structures.  For gyroscopes, however, there are two masses.  One, 

a frame itself, is anchored to the outer frame by elastic springs permitting movement in the 

direction of the tangential component of the rotation.  The other is anchored inside the previous 

by elastic springs permitting movement in the direction of the radial component of the rotation.  

Angular rates are derived using the Coriolis Effect.   For a given angular rate (𝜔  in rad/sec) , an 

object will have a greater tangential velocity (vT), relative to the non-rotating reference frame, 

when its location is further from the axis of rotation because: 

where r is the distance between the object and the axis of rotation. Thus, if a radial displacement 

occurs during rotation, the object will also accelerate tangentially.  This tangential acceleration is 

known as the Coriolis acceleration [60].  The force responsible for the Coriolis acceleration (FC) 

can be shown to be [60]: 

where m is the mass and vr is the radial velocity.  When the gyroscope is rotated, the frame mass 

is displaced due to inertia.  This motion is resisted by the springs which anchor it to the body 

 𝑣𝑇 = 𝜔𝜔 (2.23) 

 𝐹𝐶 = 2𝑚𝑚𝑣𝑟  (2.24) 
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frame.  This force, equal to FC, is proportional to the spring constant, K, and the displacement, d, 

of the frame mass.  Thus: 

and by solving for ω: 

Conductive fingers attached to the frame mass are configured between those of the body frame 

similar to the construction of accelerometers.  The differential capacitance is measured between 

the conductive fingers allowing the determination of d.  If K is known, the angular rate, ω, may 

be solved for.  The mass and springs attached to the frame mass are necessary to compensate for 

the radial component of the angular acceleration: 

Magnetometers sense magnetic fields using various circuit configurations.  A magnetic 

field vector contains components in the horizontal plane and thus a magnetometer can act as a 

digital compass to help determine the direction in which the sensor is headed.  One common 

example, like that in the InvenSense MPU-9250, uses the Hall Effect.  When an electrical current 

(i) is subject to a magnetic field vector (B), the electrons in the current experience a deflection 

force (FB): 

where vd is the drift velocity of the electrons, q is the charge, and × is the vector cross product 

[88].  The result of this force is the displacement of the electrons within the conducting material.  

The Hall Effect describes the resulting voltage due to the accumulating negative charge due to 

FB.  The magnetometer is comprised of a conducting material of thickness (h) and Hall constant 

(R) subject to a known current.  The potential difference (VO) is taken across the width of the 

material.   

 2𝑚𝑚𝑣𝑟 = 𝐾𝐾 (2.25) 

 𝜔 = 𝐾𝐾
2𝑚𝑣𝑟

. (2.26) 

 𝑭𝐵 = 𝑞𝒗𝑑 × 𝑩 (2.27) 
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Thus, the magnetic field magnitude can be solved for [89]: 

The current, and thus vd, is parallel to the axis of the conducting material (i.e., the axis of the 

magnetometer) and B determined by one single-axis magnetometer represents only the 

component of the magnetic field which is tangential to the sensor’s axis.  Orthogonal alignment 

of three single axis magnetometers permits knowledge of the orientation of B in ℝ3.   

Biomechanics Applications 

 The ability of an IMU to determine the orientation of the sensor frame (S) relative to the 

inertial world frame (W) has led to its use in biomechanics where the rigid body is a limb of the 

human body.  If the orientation of the sensor relative to the limb is known, then one can track the 

movement of the limb in space which permits the ability to perform a kinematic analysis.  The 

current gold standard for kinematic analysis is using infrared videography.  The potential use of 

an IMU in this area of research is attractive in a practical sense because it is more convenient 

than the videography due to its relative low cost, relative easy set-up, decreased post-processing 

time, and especially the fact that it does not constrain the subject to a small area [90].   

Many studies have assessed the ability of IMUs to provide accurate measurements of 

joint kinematics during various human tasks [20, 91] using both quaternion [21, 30, 90, 92–94] 

and Euler angle [22, 23, 29, 95] representations along with various Kalman Filter [22, 23, 94–

98], complementary filter [85, 99], and PI controller [90] data fusion algorithms.  Joint angle 

estimates from IMUs have been validated by comparison against some of the more rigorous 

reference standards such as a robotic arm [96] and an instrumented gimbal [100].  The validity of 

these measurements on human subjects during walking trials is supported by accurate estimates 

of pelvis angles [94, 101], trunk angles [98], knee joint angles [21, 92, 95], and foot joint angles 

 
𝐵 =

𝑉𝑂ℎ
𝑅𝑅

 
(2.28) 
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[102].  Others have validated their use in segment orientation estimations during eating and crate 

lifting tasks [97, 103] and running [95].  Improved accuracy has been the result of improved 

algorithms due to optimizing sensor calibration methods [23, 92, 104] and selection of Kalman 

Filter parameters [98]. 

 The validation of these methods has led to the extension of IMU applications in 

biomechanics research to well beyond joint kinematics.  IMUs have been used to assess military 

performance in a target maneuvering and acquiring task [105], the effect of fatigue due to load 

carriage [28, 106], and the effect of load carriage on balance [107].  Logar and Munih [18] used 

a system of 10 IMUs attached to different body segments to estimate F from the resultant joint 

torques during ski jumping.  IMU predicted F were within 10% of the values obtained by a force 

plate [18].  Highly miniaturized IMUs embedded in baseballs and softballs have been validated 

for use in measuring ball flight patterns supporting the potential use of IMUs to assess pitching 

mechanics [108]. 

 Several studies have assessed the ability of IMUs to collect data that would be relevant in 

an evaluation of sprint acceleration performance.  Bergamini et al. [22] validated the use of 

IMUs to estimate trunk angles during a sprint start.  The method showed good agreement 

between the IMU and videography determined trunk angles in the sagittal plane and angular 

velocities for the first three steps of the block start.  Bergamini et al. [24] used the second 

derivative of the angular velocity from a trunk mounted IMU during a 60 m sprint to accurately 

estimate stride and stance durations.  The error was low enough that it allowed the discrimination 

of amateur and elite sprinters.  Lee et al. [25] also estimated stance, stride, and step durations 

using the anterior-posterior acceleration spike.  Accuracy of the measurement is suggested by 

narrow 95% confidence intervals from Bland & Altman analysis, high correlation values, and 
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low standard errors and was unaffected by increased velocity [25].  Wixted et al. [26] also used 

the anterior-posterior acceleration trace from a trunk mounted IMU to identify foot contacts 

during running.  McGinnis et al. [28] rotated the acceleration vector in S (sacral mounted IMU) 

to express it in terms of W and used the determined vertical acceleration to obtain accurate 

measurements of countermovement jump height.  Milosevic and Farella [29] used the same 

technique and also found accurate measurements for both one and repetitive countermovement 

jumps.  Lee et al. [109] found strong(r = 0.96) and low error estimates (1.84 m/s2) between IMU 

and videography measured vertical acceleration of the COM during running.  Further, they were 

able to identify bilateral asymmetries in running gait.  Esser et al. [30] rotated the acceleration 

vector in S to express it in terms of W during a walking task with the sensor attached to the lower 

back.  They found good agreement between IMU and videography determined values (average 

error for acceleration, velocity, and position were -0.19 m/s2, -0.012 m/s, and -0.047 cm 

respectively).  To the author’s knowledge, Parrington et al. (2016) are the only others to report 

the use of IMUs to estimate sprint velocity, however, the details of their data fusion algorithm 

was not provided [27].  If the acceleration values are used to predict kinetic variables by inverse 

dynamics, one might be able to obtain the relevant determinants of sprint acceleration 

performance using an IMU.  Thus, IMUs might provide the technology to perform a more 

thorough evaluation of sprint acceleration performance by providing measures related to ground 

reaction force application technique, joint kinematics, spatiotemporal variables, and step-by-step 

analysis capable of identifying bilateral asymmetries.  No current assessment method can by 

itself provide such a comprehensive evaluation.  
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2.4 Conclusion 

Many individual and team sports focus on the development of sprinting speed in their 

training programs.  In actual gameplay of many of these sports the distance interval over which 

the sprinting bout occurs is often short enough that maximal sprint velocity is never reached.  

Thus the ability to accelerate is arguably more valuable than one’s maximal sprinting velocity.  

Many factors contribute to an athlete’s accelerative ability that are related to both technique and 

muscular characteristics.  Improving performance involves targeting weaknesses in both of these 

areas.  Of particular importance is the technical application of force during foot contact with the 

ground.  The use of step-by-step analysis of this force application technique has allowed the 

identification of technical patterns characteristic of athletes with greater accelerative ability.  

These technical characteristics provide objective standards that can be used by coaches to 

identify areas of improvement for their athletes.  However, the current methods used to perform 

these step-by-step analyses are tedious, require relatively expensive equipment, and are based on 

assumptions that may not always be valid.  A more effective measurement technique is necessary 

and will allow the implementation of this information in a practical setting.  Further, it will allow 

future studies to answer questions about not just what faster athletes do different, but how they 

do it.  IMUs are becoming more prevalent in biomechanics research.  Because of their small size, 

wireless capabilities, and relatively low costs, IMUs may provide the technology to improve the 

current state of acceleration measurement techniques.
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Chapter 3: The Use of a Single Inertial Sensor to Estimate 3-Dimensional Ground Reaction 

Force during Accelerative Running Tasks 

Abstract 

Inertial measurement units (IMUs) provide a potential means to estimate three-dimensional 

ground reaction force (𝑭) in unrestricted field assessments.  In this study, the feasibility of using 

a single IMU to estimate 𝑭 was investigated.  Force plate (FP) measurements of 𝑭 and estimates 

from the proposed IMU method were collected while subjects (12 male, 3 female) performed 

two tasks: (1.) a standing sprint start (SS) and (2.) a 45º change of direction task (COD).  Step 

averaged 𝑭 (𝑭�), ratio of force (𝑅𝑅), peak 𝑭, and instantaneous 𝑭 were compared between the FP 

and IMU estimates using Bland-Altman analysis, root mean square error (RMSE), and Pearson’s 

product moment correlation coefficients (r).  In general, IMU estimates of directional 𝑭� (RMSE: 

45.17 N to 77.32 N for SS and 60.01 N to 169.91 N for COD) showed less error than directional 

peak 𝑭 (RMSE: 514.67 N to 1175.07 N for SS and 428.19 N to 1150.89 N for COD) and 

directional instantaneous 𝑭 (RMSE: 376.64 N to 476.67 N for SS and 436.44 N to 632.54 N for 

COD).  Correlation coefficients were moderate (r = 0.50 to 0.75) to strong (r > 0.75) for most 

estimates except for the medio-lateral component of 𝑭� and the antero-posterior component of 

peak 𝑭 during COD.  The proposed method accurately estimated the orientation of 𝑭� (angular 

error: 3.4° to 9.2°), but not peak 𝑭 (angular error: 26.6° to 31.0°).  Valid estimates of 𝑅𝑅 from 

the IMU method are also suggested by significant correlations (r = 0.85, p < 0.01) and low bias 

(0.88%).  The results of this study suggest IMUs can accurately estimate step average 𝑭 during a 

linear sprint start, but not during change of direction tasks nor when estimating peak 𝑭 or 

instantaneous 𝑭. 

 



24 
 

Introduction 

The ground reaction force vector (𝑭) is an index often used to evaluate human 

movement.  Component and resultant (𝐹𝑟𝑟𝑟) magnitudes of 𝑭 as well as the orientation of the 

vector are used in both clinical [110, 111] and performance assessments [5, 112].  For example, 

in a linear sprinting task, the ratio of force (𝑅𝑅) expressed as the ratio of the forward component 

of 𝑭 relative to the resultant magnitude where the medio-lateral component is considered 

negligible, is often used to assess the ability to optimally orient 𝑭 during the acceleration phase 

of sprinting [2].  Further, the medio-lateral and vertical components of 𝑭 are used to assess 

performance during change of direction tasks [113]. 

 Force plates are considered the gold standard for measuring 𝑭, however, movements are 

confined to a small area.  Accelerometers have shown potential in being able to estimate 𝑭 

during ambulatory movements [16, 84, 114].  Their application in this context is dependent upon 

the assumption that the location of the accelerometer on the body is such that measured 

accelerations during the movement are representative of the body center of mass (COM).  Under 

this assumption, 𝑭 is derived from Newton’s second law [84, 114].  Wundersitz et al. (2013) 

assessed the ability of an accelerometer to measure the peak vertical component of 𝑭 and peak 

𝐹𝑟𝑟𝑟 during accelerative tasks.  To determine 𝐹𝑧, they scaled the acceleration measured along the 

accelerometer’s vertical axis by the subject’s mass.  Their results showed the sensor consistently 

underestimated peak 𝐹𝑧, yet at the same time consistently overestimated peak 𝐹𝑟𝑟𝑟 (except when 

smoothing the signal at 10 Hz).  One explanation for this finding might be that while peak 𝐹𝑧 was 

underestimated, the components in the horizontal plane (peak 𝐹𝑦 and peak 𝐹𝑥) were consistently 

overestimated and thus exaggerated the peak 𝐹𝑟𝑟𝑟 estimation.  The authors of this paper offer 

another possible explanation suggesting perhaps the sensor’s coordinate frame was not aligned 



25 
 

with that of the force plate.  If so, the true vertical component of 𝑭 in the force plate frame would 

appear in the sensor frame as a vector having components along each axis.  Then, the 

accelerometer would be expected to underestimate peak 𝐹𝑧.  To appropriately compare estimated 

components of 𝑭, the acceleration vector in the sensor frame should be rotated to the force plate 

frame.  Inertial measurement units (IMU) have onboard accelerometers, gyroscopes, and 

magnetometers giving them ability to determine the 3-dimensional orientation of body segments 

and thus the means to express sensor referenced vectors in the inertial world frame [20].  Some 

have predicted 𝑭 using multiple IMUs attached at each body segment by inverse dynamics [18, 

115].  It is unknown, however, how well a single IMU can estimate 3-dimensional 𝑭 while 

compensating for the changing sensor orientation. 

 The purpose of this study was to assess the ability of a single, sacral worn IMU to 

accurately measure directional 𝑭 during two accelerative running tasks: (1.) a standing sprint 

start and (2.) a change of direction task.  The validity of the measurements were determined by 

comparing the estimates to force plate measurements. 

Methods 

Subjects 

 Fifteen subjects (12 male, 3 female, age: 23.20 ± 2.11 yrs, height: 1.78 ± 0.09 m, mass: 

75.46 ± 12.56 kg) volunteered to participate in this study.  Subjects were included in the study if 

they were between the ages of 18 and 35 years old, reported no musculoskeletal injury in the six 

months prior to testing, and were able to perform accelerative running tasks pain free.  All 

subjects provided written consent to participate and the Appalachian State University 

Institutional Review Board approved this study.  
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Instruments 

 The IMU used in this study was a Yost Data Logger 3-Space Sensor (YEI Technology, 

Portsmouth, OH).  These sensors have an onboard three-axis accelerometer (range: ±24 g, noise 

density: 650µg/Hz1/2, 12-bit resolution), three-axis gyroscope (range: ±2000º/s, noise density: 

0.009º/s/Hz1/2, 16-bit resolution), and three-axis magnetometer (range: ±1.3 Ga, 12-bit 

resolution).  The IMU was set to sample at 450 Hz and data were written to a MicroSD card and 

later downloaded to a computer via USB for analysis.  IMU estimates of 𝑭 were compared to 

measurements made by a force plate (FP) (AMTI, Watertown, MA, sampling frequency: 1000 

Hz) to determine the validity of the estimate. 

Procedures 

 Data collection consisted of one visit to the Appalachian State University Neuromuscular 

and Biomechanics Laboratory.  First subjects’ height, mass, and percent body fat were recorded.  

Percent body fat was assessed to evaluate the effect that subcutaneous fat might have on IMU 

estimates.  The Lange Skinfold Caliper (Beta Technology Inc., Cambridge, MD) was used to 

obtain skinfold measurements for the three-site skinfold technique (chest, abdomen, and thigh for 

males and triceps, abdomen, and suprailium for females) [116, 117].  Subjects’ performed a five-

minute general warm-up on a cycle ergometer (Monark Exercise AB, Vansbro, Sweden) before a 

familiarization period during which they practiced the two general movements they would be 

performing during data collection: (1.) a standing sprint start (SS), and (2.) a change of direction 

task (COD).  The starting location of each task was determined such that full foot contacts with 

the FP were made during the different movements.  Next, the IMU was attached to the sacral 

region using an elastic strap and athletic tape (Figure 3.1).  The specific location of the sensor  
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Figure 3.1: Example of a subject going through the pre-movement sequence to determine the initial IMU 
orientation.  (A.) During the static orientation trial, subjects aligned their hips with the forward axis of the 
force plate.  (B.) Then they assumed their standing sprint start stance for a three-second countdown before 
performing the movement. 
 

was at the point of intersection of the spine with the intercristal line [118].  The latter is defined 

as the line connecting the left and right posterior superior iliac spines and was found via 

palpation [118].  The FP and IMU began recording data while the subject was off the FP.  The 

FP was zeroed before the subject stepped on and performed a first set of two jumps separated by 

a five-second standing static trial.  The jumps were necessary to identify the static trial during 

post-processing and to time-synchronize the IMU and FP signals.  This first static trial was used 

to determine the FP estimate of the subject’s bodyweight.  The subject then moved to the starting 

location for that movement trial.  Again, they performed a second set of two jumps separated by 
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another five-second standing static trial.  During the static trial, care was taken to ensure the 

subject’s feet and pelvis were directed straight forward and aligned parallel to the forward axis of 

the FP (Figure 3.1).  This was necessary to later determine the initial IMU heading relative to the 

FP frame before the start of movement.  The average gyroscope output during this static interval 

defines the gyroscope bias which was removed from the angular rate signal before integration.  

From this position, subjects’ moved their preferred foot back to assume their standing start 

position and were instructed to remain still during a three-second countdown after which 

beginning the movement for that trial (Figure 3.1).  Six trials were performed for both the SS and 

COD conditions.  Three of the SS trials were performed with the subject beginning on the FP to 

assess the initial push of the standing sprint start.  For the other three trials, subjects began 

behind the FP to assess the first foot contact after the initial push.  For the six COD trials, a cone 

was placed 5 m away from the FP at about a 45º angle.  Three trials were performed by cutting to 

the left and the other three were to the right.  For all COD trials, subjects began behind the FP 

such that the plant foot for the cut was the first foot contact (i.e., right foot for the cut to the left 

and left foot for the cut to the right).  A trial was repeated if the subject’s foot did not clearly 

contact the FP. 

IMU Orientation and Vector Rotation 

 The measurement of 𝑭 in the IMU frame (𝑭𝑆𝑆) is given by scaling the acceleration vector 

by the subject’s mass [84, 114].  It then must be rotated to be expressed relative to the FP frame 

(𝑭𝑆𝐹) in order to properly compare the estimate to the FP measurement of  (𝑭𝐹𝐹).  The quaternion 

notation was used to express the orientation of the IMU frame relative to the FP frame and to 

rotate 𝑭𝑆𝑆 to 𝑭𝑆𝐹.  The quaternion notation describes the orientation according to the single 

composite rotation that would align the FP frame with that of the IMU.  However, one may also 
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describe this single rotation according to the following two successive rotations: first through an 

angle 𝛼 about the FP frame vertical axis and second through an angle 𝛽 about an axis of unit 

length in the horizontal plane. This allows the determination of two angles: 𝛼 representing the 

IMU heading (angular deviation of horizontal plane axes when the vertical axes are aligned) and 

𝛽 representing the IMU attitude (angular deviation of the IMU and FP frame vertical axes).  

Measurements during a static interval from the IMU magnetometer and accelerometer provide an 

estimate of the initial IMU heading and attitude respectively and thus the initial conditions from 

which integration may begin. To determine the orientation of the IMU throughout some 

movement, the quaternion orientation is time integrated using the gyroscope angular rate signal 

from the initial orientation. This process allows the accelerations (and therefore associated 

forces) measured with the IMU (corresponding to the person) to be expressed in the FP frame in 

order to compare with the same measured by the FP. Complete details of the computation 

methods, as summarized in this section, is described in Appendix A. 

Data Reduction 

 All data analysis was performed using custom programs written in MATLAB 

(MathWorks, Natick, MA).  First, FP and IMU data were low pass filtered at 70 Hz [24].  All 

data were resampled at the IMU mean sampling frequency (445.72 ± 0.55 Hz) using piecewise 

cubic interpolation to compare continuous data.  Cross-correlation of the IMU and FP signals 

during the interval containing the first set of two jumps determined the time shift used to time-

synchronize the two systems [31, 119].  The average force output from the FP over the stillest 

one-second interval between the jumps (defined as the interval during which the sum of the 

variance of the output from each axis of the accelerometer was a minimum) was used to estimate 

the subject’s bodyweight (and therefore mass) in terms of the FP.  The subject’s mass (𝑚) was 
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used to scale the IMU referenced accelerations (𝒂𝑆) to estimate 𝑭 according to Newton’s second 

law [84].  As mentioned in the Procedures section, the second set of two jumps was used to 

provide an initial IMU heading estimate.  Although the IMU and anatomical frame vertical axes 

may not have been exactly aligned, because the surface of the IMU (i.e., the 𝑦-𝑧 plane) was 

aligned flush to the subject’s skin, the assumption is made that the IMU and anatomical frame 

forward axes were aligned.  Thus, since the anatomical and FP frame forward axes were aligned 

during this static trial, so were those of the IMU and FP [87].  The FP frame heading (𝛼0) 

relative to the projection of the local magnetic field vector 𝑩 onto the horizontal plane 𝑩𝐻 is then 

computed (Figure 3.2) [23, 119] (see Appendix A for details).   From this standing orientation, 

the subject moved their preferred foot back to assume their standing sprint start stance with the 

front foot remaining stationary (Figure 3.1).  The assumption is made that in this transition to 

stance, the subtle translation of the IMU in the FP frame is sufficiently small such that the 

change in 𝑩 between the two locations is negligible.  Again, the accelerometer and 

magnetometer were used to determine the IMU orientation during the stillest one second interval 

of the sprint start stance.  This time, the IMU heading estimate relative to 𝑩 (𝛼𝑠,0) is expressed 

relative to the FP heading 𝛼0.  Then, the IMU heading relative to the FP frame (𝛼) during stance 

is given by (Figure 3.2): 

 𝛼 = 𝛼𝑠,0 − 𝛼0 (3.1) 

Now, given the initial orientation, the gyroscope angular rate signal was integrated to estimate 

the IMU orientation at each instant during the movement.  It was assumed that the time duration 

of the movement during which the IMU orientation need to be known (i.e., until foot off) was 

sufficiently small (less than two steps) such that drift error is assumed negligible and thus no data 

fusion techniques were implemented [94, 97].  Then, the IMU estimate of 𝑭 was rotated to the 
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FP frame in order to directly compare the two estimates.  To compare the same IMU and FP 

estimates of 𝑭 in time, a foot contact is defined to be when the vertical component of 𝑭 measured 

by the FP was above 10 N [2].  For the SS trials assessing the initial push from stance, the start 

of the movement was defined as the first instant the forward component of 𝑭 measured by the FP 

went above 10 N. 

 

Figure 3.2: The projection of the local magnetic field vector onto the horizontal plane (𝑩𝐻: the dashed 
black line in the figure) provides a reference vector to determine first the FP heading 𝛼0 relative to 𝑩𝐻, 
then the IMU heading 𝛼𝑠 relative to 𝑩𝐻, and thus the IMU heading relative to FP 𝛼.  The FP and IMU 
horizontal plane axes are the black and red solid lines respectively. 
 

Statistical Analysis 

 The three components of  (𝐹𝑥: forward, 𝐹𝑦: left, and 𝐹𝑧: up) and the resultant magnitude 

(𝐹𝑟𝑟𝑟) of the measurements made by the IMU and FP were compared in three ways: (1.) step 

averaged 𝑭 (𝑭�), (2.) peak 𝑭, and (3.) instantaneous 𝑭 during the step.  The ratio of force (𝑅𝑅) 

was also assessed for the SS trials to consider the potential application to assessing sprint  
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kinetics by [2]: 

 
𝑅𝑅𝑖 =

𝐹�𝑥,𝑖

�𝐹�𝑥,𝑖
2 + 𝐹�𝑧,𝑖

2
  

(3.2) 

where 𝑖 denotes the measurement system (IMU or FP) and 𝐹�𝑥,𝑖 and 𝐹�𝑧,𝑖 are the average 𝐹𝑥 and 𝐹𝑧 

values over the step.  The error in the IMU estimates of  𝑭�, peak 𝑭, and 𝑅𝑅 were quantified using 

root mean square error (RMSE), Pearson’s product moment correlation coefficients (r), relative 

error (absolute percent difference), and Bland-Altman 95% limits of agreement (LOA).  To 

evaluate the how well the IMU predicted the orientation of 𝑭� and peak 𝑭 independent of the 

component magnitudes, the angular error (𝜃) of the IMU estimate of the vector was determined 

according to: 

 𝜃 = 𝑎𝑎𝑎𝑎 �
𝑭𝐼𝐼𝐼 ∙ 𝑭𝐹𝐹

‖𝑭𝐼𝐼𝐼‖‖𝑭𝐹𝐹‖
� (3.3) 

where ∙ denotes the vector dot product, ‖ ‖ denotes the magnitude of the vector, and 𝜃 is in 

degrees.  The error in the IMU estimate of instantaneous 𝑭 was quantified using RMSE and r.  

The level of statistical significance for correlation coefficients was set a priori at a level of 0.05.  

The clinical significance of the correlation coefficients were evaluated according to the following 

criteria: 0.00 to 0.25 (little to none), 0.25 to 0.50 (fair), 0.50 to 0.75 (moderate), and > 0.75 

(strong) [120].  For the Bland-Altman analysis, the normality of the difference distributions were 

checked using the Shapiro-Wilk test.  Data were transformed by the natural logarithm where 

differences were not normally distributed or showed a strong ( r ≥ 0.75) relationship with the 

mean of the measurements [121].  For these cases, the anti-log bias and LOA are given.  To 

determine the effect that subcutaneous fat may have had on the IMU estimate, r was used to 

determine the relationships between percent body fat and relative error for each subject. 
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Results 

 Table 3.1 shows the comparison between IMU and FP measures of 𝑭� and peak 𝑭 during 

SS and COD.  Figure 3.3 shows the angular error in the IMU estimate of the orientation of 𝑭� and 

peak 𝑭.  Table 3.2 and Figure 3.4 show the comparison between IMU and FP estimates of 

instantaneous 𝑭. 

Step Averaged Forces 

 IMU estimates of 𝑭�  and 𝑅𝑅 during SS were significantly (p < 0.01) correlated with FP 

estimates (r ≥ 0.84) along with RMSE ≤ 77.32 N and relative error ≤ 12.88% except for 𝐹𝑦�  (r = -

0.33, relative error = 341.20%).  IMU estimates of 𝑭� during COD were all significantly (p < 

0.05) correlated with FP estimates (r = 0.53 for 𝐹�𝑦-right to r = 0.94 for 𝐹�𝑧) along with RMSE ≤ 

169.91 N and the relative error ranged from 5.20% for 𝐹�𝑧 to 218.02% for 𝐹�𝑥.  The angular error 

in the IMU estimate of the orientation of 𝑭� was less than 10° for both SS and COD.  

Peak Forces 

 IMU estimates of peak 𝑭 were characterized by RMSE ≥ 514.67 N and the relative error 

ranged from 22.20% for peak 𝐹𝑧 during SS to 3111.90% for peak 𝐹𝑦 during SS.  IMU estimates 

were significantly correlated with FP estimates only for peak 𝐹𝑥, peak 𝐹𝑧, and peak 𝐹𝑟𝑟𝑟 during 

SS (r ≥ 0.62, p < 0.01) and for peak 𝐹𝑧 and peak 𝐹𝑟𝑟𝑟 during COD (r = 0.52 and 0.57 

respectively).  The angular error in the IMU estimate of the orientation of peak 𝑭 was ≥ 26.6º. 

Instantaneous Forces 

 The error in the IMU estimate of instantaneous 𝑭 during SS was characterized by RMSE 

≥ 376.64 ± 215.54 N with correlation coefficients ranging from r = -0.24 ± 0.30 for 𝐹𝑦 to r = 0.63 

± 0.16 for 𝐹𝑥.  For the COD task, the RMSE ≥ 436.44 ± 175.29 N with correlation coefficients 

ranging from r = 0.08 ± 0.25 for 𝐹𝑦 to r = 0.63 ± 0.25 for 𝐹𝑧.
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Table 3.2: Analysis of error in the IMU estimate of instantaneous 𝑭 for SS (top) and COD (bottom) 
conditions by comparison to FP.  Root mean square error (RMSE) and Pearson product moment 
correlations (r) are the mean ± sd of the values obtained across all subjects. 

     RMSE [N] r 
 SS 

𝐹𝑥 415.52 ± 228.74 0.63 ± 0.16 
   𝐹𝑦 415.84 ± 267.60 -0.24 ± 0.30 
   𝐹𝑧 376.64 ± 215.54 0.48 ± 0.31 
   𝐹𝑟𝑟𝑟 476.57 ± 287.02 0.47 ± 0.31 
      

COD 𝐹𝑥 632.54 ± 188.89 0.48 ± 0.22 
   𝐹𝑦 563.40 ± 203.24 0.08 ± 0.25 
   𝐹𝑧 436.44 ± 175.29 0.63 ± 0.25 
   𝐹𝑟𝑟𝑟 614.20 ± 248.41 0.46 ± 0.30 
  

Discussion 

The results from this study suggest the proposed IMU method may provide valid 

estimates of 𝐹�𝑥, 𝐹�𝑧, 𝐹�𝑟𝑟𝑟, 𝑅𝑅, and the orientation of 𝑭� during the SS task and for 𝐹�𝑧, 𝐹�𝑟𝑟𝑟, and the 

orientation of 𝑭� during a 45º COD task.  The criterion validity of the aforementioned variables is 

suggested by strong (r = 0.84 to 0.94) and significant (p < 0.01) correlations with FP estimates, 

RMSE between 45.17 N and 77.32 N, relative error between 5.20% and 12.88%, and average 

bias between -39.45 N and -1.82 N.  The IMU method may also provide valid estimates of the 

orientation of 𝑭� suggested by angular error of 3.4º for the SS task, 8.1º for COD-Right, and 9.2º 

for COD-Left.  The conclusion of valid estimates for these variables was further supported after 

a post-hoc analysis found the effect size �𝐸𝐸 = 𝑭𝐼𝐼𝐼−𝑭𝐹𝐹
𝑆𝑆𝐹𝐹

� of IMU and FP differences was 

negligible to small (ES = 0.03 to 0.25) [2].  Thus, the proposed method appears to be appropriate 

in applications where the step-averaged sagittal plane values or the orientation of 𝑭� are most 

important (e.g., analyzing performance in linear sprinting and change of direction tasks) [2, 14]. 
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The proposed method does not appear to provide valid estimates of peak 𝑭 for the SS and 

COD tasks, 𝐹�𝑦 during both SS and COD tasks, nor 𝐹�𝑥 during the COD task.  For these estimates, 

the RMSE and relative error were relatively large compared to the other measures.  Thus, the 

proposed IMU method may be inappropriate in applications where these values are of interest. 

However, the IMU estimates were significantly correlated (p ≤ 0.05) with FP measures for all 

values except peak 𝐹𝑦 during SS and COD, 𝐹�𝑦 during SS, and peak 𝐹𝑥 during COD.  The 

significant correlations suggest the method would be appropriate to compare values that were 

each obtained by the proposed method (e.g., to compare pre- and post-intervention, to assess the 

effects of fatigue, etc.). 

The relative error statistic provides insight into the error in the IMU estimate relative to 

the magnitude of the reference measure.  For this reason, some values were characterized by 

noticeably large relative errors compared to others, but with lesser absolute error (RMSE).  For 

example, the relative error of the IMU estimate of 𝐹�𝑥 during COD was 218.02% while the RMSE 

was 100.93 N.  On the other hand, relative error for peak 𝐹𝑧 during SS was just 22.20% with 

RMSE 514.67 N.  Thus, the appropriateness of the IMU method may depend on how much error 

is acceptable for a given application and should be considered before using the proposed method. 

The proposed IMU method to predict 𝑭 is dependent upon the assumption that the IMU 

location is representative of the COM.  The sacral region may meet this assumption while 

standing in anatomical position; however, due to limb movements relative to each other during a 

movement, the location of the COM in the body frame will be displaced.  A FP is sensitive to the 

force responsible for this displacement, but a sacral worn IMU has no means to sense the relative 

movement of body segments other than the sacrum.  Thus, the poor estimates of instantaneous 𝑭 

are not surprising.  However, the average displacement of the sacrum over some time interval 
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must closely resemble that of the COM and thus also the associated average acceleration over the 

interval.  This may explain the more accurate estimates of 𝑭�.  The small angular differences 

between IMU and FP measures of 𝑭�  ( 𝜃 < 10°, Figure 3.3) as well as the accurate estimates of 

𝑅𝑅 (Table 3.1) support the validity of the orientation estimate, especially for the SS task.  This 

was not the case for the peak values.  If the observed error were to some extent due to the 

relative movements of the limbs, then the sacrum would be expected to experience lesser 

accelerations while the COM experiences greater.  This must result in even greater sacral 

accelerations at some later time (assuming the position of the COM eventually returns to the 

sacral region).  This may explain the inaccuracy in the estimates of peak 𝑭.  This explanation is 

also supported by the instantaneous force-time traces (Figure 3.4).  Specifically, the braking 

portion of 𝐹𝑥 and the decreasing end of 𝐹𝑧 towards toe off, appear to occur slightly later in the 

IMU trace.  Finally, the fact that the sensor was placed on the surface of the skin means that it 

was displaced radially from the true COM location.  Consequently, rotation about an axis 

through the COM would appear as a linear acceleration in the sensor frame.  This may explain 

the oscillations immediately following foot contact in the instantaneous IMU 𝐹𝑦 trace (Figure 

3.4) before the smoother pattern resembling that of the FP. 

To the author’s knowledge, a paper by Wundersitz et al. (2013) is the only other study 

comparing IMU estimates of 𝑭 to FP estimates for linear acceleration and change of direction 

tasks [114].  Their study had several methodological differences compared to the present study: 

(1.) the IMU was placed on the subjects’ upper back, (2.) the start of the movement trial was 5 m 

behind the force plate (as opposed to one step in this study), (3.) they only estimated peak 𝐹𝑧 and 

peak 𝐹𝑟𝑟𝑟, and (4.) the IMU referenced estimate of 𝑭 was not rotated to the FP frame.  They 

assessed the effect of different low-pass filter cutoff frequencies on the estimate and found 10 Hz 
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to be optimal.  The data in this study was filtered at 70 Hz [24] and thus, in what follows, the 

data presented in this study is compared with their data that was low pass filtered at 25 Hz (this 

was the closest cutoff frequency to our 70 Hz).  They found the bias of the IMU estimate of peak 

𝐹𝑧 and peak 𝐹𝑟𝑟𝑟 during the SS task was -226 N and 315 N respectively compared to the 208.85 

N and 903.15 N bias found in this study.  For the 45º COD task, the bias was -211 N for peak 𝐹𝑧 

compared to 329.17 N in this study and 576 N for peak 𝐹𝑟𝑟𝑟 compared to 918.43 N in this study.  

The authors suggest IMU to FP frame misalignment as a potential explanation of the observed 

error.  If this explanation were true, the actual peak 𝐹𝑧 would appear in the IMU frame as a 

vector with components along at least two axes.  In this case, if the estimate of peak 𝐹𝑟𝑟𝑟 were 

perfect, peak 𝐹𝑧 would be expected to be too low.  On the contrary, if peak 𝐹𝑟𝑟𝑟 were 

underestimated it would be unclear how much of the error in peak 𝐹𝑧 (if any) was due to 

misalignment or the underestimation of the magnitude.  However, the finding that peak 𝐹𝑟𝑟𝑟 was 

consistently overestimated would suggest an expectation of overestimated component values as 

well.  The absence of the latter further supports IMU to FP frame misalignment as a likely source 

of the observed error.  In this study, the overestimates of peak 𝐹𝑟𝑟𝑟 are reported, but contrary to 

the findings of Wundersitz et al., the results of this study found peak 𝐹𝑧 was also overestimated.  

Although this does not rule out misalignment error, it does make it less clear than if it were 

underestimated.   

The magnitude of the peak 𝐹𝑟𝑟𝑟 overestimation was greater in our study compared to 

Wundersitz et al., and because rotation of the vector does not change its magnitude, other 

explanations are necessary to clarify this finding.  These could include the higher sampling 

frequency used in this study (446 Hz vs. 100 Hz), the use of different sensors (Yost 3-Space vs. 

SPI Pro) and associated technical specifications (e.g., noise density, non-linearity, etc.), and the 
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location of the IMU in this study being inferior to that used in their study.  The latter was also 

suggested by Wundersitz et al. because shock attenuation during running has been observed at 

more superior body segments [122], which would suggest an expectation of higher acceleration 

magnitudes at locations closer to the ground. 

Wundersitz et al. [114] report correlations between the IMU and FP estimates for peak 𝐹𝑧 

(r = 0.12) and peak 𝐹𝑟𝑟𝑟 (r = 0.35) during the SS task that were lower than that found in the 

present study (r = 0.65 and 0.62 respectively).  These relationships were also lower in their study 

for the COD task (r = -0.26 for peak 𝐹𝑧 and 0.40 for peak 𝐹𝑟𝑟𝑟) compared to significant 

relationships found in the present study (r = 0.52 and 0.57 respectively).  As discussed 

previously, misalignment error may explain their finding of poor relationships for the IMU 

estimate of peak 𝐹𝑧.  However, if the estimate of peak 𝐹𝑟𝑟𝑟 in the present study is different from 

their estimate only because of a greater bias, then relationships between IMU and FP measures 

for peak 𝐹𝑟𝑟𝑟 should not be much different between the studies.  This not being the case, one 

explanation could be that the location of the IMU on the upper back used in their study may be 

subject to accelerations due to high frequency trunk flexions during the weight acceptance phase 

that may not have as great of an effect on an IMU mounted at the sacral region [123].  This effect 

may vary between subjects which would explain the observed lesser relationships and why 

smoothing the signal improved the relationship (high frequency trunk flexions would be removed 

after filtering).  

Conclusion 

 The results from this study suggest the proposed IMU method may provide accurate 

estimates of 𝐹�𝑥, 𝐹�𝑧, 𝐹�𝑟𝑟𝑟, 𝑅𝑅, and the orientation of 𝑭� during a linear standing sprint start and for 

𝐹�𝑧, 𝐹�𝑟𝑟𝑟, and the orientation of 𝑭� during a 45º change of direction task, but not for any of the 
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other values.  Step averaged forces are used to characterize performance in linear acceleration 

and change of direction tasks, thus the proposed method may be appropriate for these 

applications.  The amount of acceptable error, however, may vary depending on the context and 

thus should be considered before implementing the proposed method.  The results of this study 

may not be generalized to movements other than the ones used in this study or for movements 

over longer periods of time unless data fusion techniques are used for the orientation estimate.  

Future research should investigate ways to further pin-point the underlying causes of the 

observed errors and potential ways to compensate for these errors.  This may include, for 

example, estimating the measured acceleration that may be due to rotation and/or compensating 

for relative limb movements by using more IMUs at multiple limbs.
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Chapter 4: A Novel Adaptive Gain Filtering Algorithm to Estimate Sprint Velocity Using a Single 

Inertial Sensor 

Abstract 

The ability to measure sprint running velocity is useful in a performance evaluation and to guide 

training interventions.  Inertial measurement units (IMU) are becoming increasingly popular for 

field-based performance assessments making them a potential attractive methodology to measure 

sprint velocity.  In this paper, a novel filtering algorithm to estimate sprint velocity using a single 

IMU independent of external measurement systems is described.  The proposed method is 

compared to a reference method using photocell position-time data.  Instantaneous velocity, 

average interval velocity, and maximal step velocity are determined using both methods for 

twenty-eight subjects during a maximal effort 40 m sprint.  The concurrent validity of the 

proposed method was assessed using Bland-Altman analysis, root mean square error (RMSE), 

relative error (absolute percent difference), and Pearson’s product moment correlation coefficient 

(r).  For average interval velocity, there was a slight underestimation in the first 20 m of the 

sprint (-0.31 to -0.12 m/s) and a slight overestimation later in the sprint (0.05 to 0.13 m/s).  The 

concurrent validity of the proposed method may be suggested by relative errors between 5.09% 

and 7.13%, RMSE between 0.34 m/s and 0.67 m/s, and significant correlations (r ≥ 0.75, p < 

0.01) between IMU and photocell estimates.  The results of the study give insight into the source 

of some of the errors that allow for the development of potential compensatory techniques in 

future research.  This study broadens the scope of IMU based applications to allow performance 

assessments in less restricted environments. 

 

 

 



44 
 

Introduction 

Sprint running velocity over short durations (i.e., during the acceleration phase) is 

advantageous in both individual and team sports [1] and is thus the focus of many training 

programs [10, 124, 125].  Accurate methods to assess sprint velocity are necessary to best 

evaluate an athlete’s performance and to determine the effectiveness of a training program.  

Available techniques to assess sprint velocity include the use of photocells [13, 14, 53], lasers 

[55], radar [14, 50], treadmills [47, 49], and global positioning systems (GPS) [126, 127].  

Lasers, radar, and treadmills are relatively expensive, limit the assessment area, and have limited 

validity under certain circumstances (e.g., non-constant velocity for treadmills and the initial 

sprint start for lasers)  [43, 44, 55].  Studies investigating GPS units concerning their ability to 

measure sprint velocity have varying results [126–129] and their use indoors is limited [130, 

131].  The use of photocells to estimate sprint velocity was first suggested by Furusawa et al. in 

1927 [13] where an expression was derived for the instantaneous sprint velocity that is dependent 

only on position-time data [13].  The model is derived given the assumption of the force-velocity 

property of muscle and that the sprint is undertaken in a non-fatigued state [13].  The solution to 

the equation involves two constants (𝑣𝑚 and 𝜏) and is related to the position (p) at some time (t) 

by [13, 14]: 

 𝑝(𝑡) = 𝑣𝑚 �𝑡 + 𝜏𝑒−𝑡 𝜏� � − 𝑣𝑚𝜏 (4.1) 

Then, the velocity (v) at time t is given by differentiation: 

 𝑣(𝑡) = 𝑣𝑚 �1 − 𝑒−
𝑡
𝜏� (4.2) 

More recently, this method has allowed the use of smartphones to assess sprint velocity where 

the position-time data is obtained using smartphone video data [15]. 
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Inertial measurement units (IMUs), are becoming more popular for field-based 

biomechanics data collection [20, 26, 107, 132].  An IMU is a single sensor with an on-board 

three axis accelerometer, three axis gyroscope, and/or three axis magnetometer.  The use of 

IMUs in the context of assessing sprint velocity is attractive for several reasons: (1) ease of use, 

(2) small size, (3) low cost, (4) the assessment task is not limited to a specific area (e.g., a 

laboratory, a camera’s field of view, etc.), (5) they can be used indoors, and (6) they potentially 

provide the means to allow a more comprehensive assessment (e.g., including spatiotemporal 

data [26], joint angles [22], and kinetics [114]).  Thus, the use of an IMU to measure sprint 

velocity was considered in this study. 

Perhaps the simplest estimation of sprint velocity using IMU data would be the 

following: (1) estimate the initial orientation of the IMU in the track frame, (2) time-integrate the 

gyroscope angular rate signal during the sprint to obtain the orientation at each instant, and (3) 

rotate the acceleration vector from the IMU frame to the track frame and time-integrate the 

component of that vector along the track frame forward axis.  An estimate obtained this way is 

prone to error that may originate at any of these three steps due to gyroscope sensor drift [97], 

the effect of ferromagnetic disturbances on magnetometer estimates [133], and/or inaccurate 

estimates of each sensor’s calibration parameters (bias, sensitivity, and/or non-orthogonality) 

[23].  To compensate, an external measurement (e.g., GPS, radar, video, etc.) may be used to 

provide a better estimate via different data fusion techniques [131, 134].   

A sprint velocity measurement system requiring the use of IMUs in combination with 

other external measurement systems removes some of the aforementioned advantages of an 

IMU-only based system.  However, by excluding the use of these other measurement systems the 

availability of reference data for error compensation is also removed.  A single IMU does 
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provide the means to fuse orientation estimates from different on-board sensors.  The 

accelerometer and magnetometer can provide an estimate of attitude and heading respectively 

that can then be fused with the estimate from gyroscope integration [23, 93].  Data fusion in this 

way is only valid during quasi-static intervals (intervals when the measured acceleration is 

representative of gravity) and when there are no ferromagnetic disturbances (such that the 

measured magnetic field vector is constant at each location throughout the sprint).  The dynamic 

nature of sprinting, however, prevents the occurrence of any quasi-static interval thereby 

eliminating the possibility of fusing an accelerometer estimate of orientation during the sprint.  

Further, the ferromagnetic disturbance problem would limit the incorporation of a magnetometer 

orientation update, especially indoors [133].  Thus, the use of some other reference information 

would be necessary to provide error compensation, which would be expected to be especially 

necessary as the sprint progresses in time [131, 135].  Yang et al. [32] proposed a method 

incorporating the known behavior of the shank during certain phases of the gait cycle to 

compensate for drift error.  However, the method was only validated for constant velocities of 

relatively low magnitude (≤ 3.5 m/s).  Considering this, an attempt was made to investigate what 

other reference information might be incorporated in a sprint velocity measurement system using 

a single IMU.  It was theorized that some characteristics of sprint running might act as natural 

constraints that could be used to correct IMU estimates.  Namely, the following two assumptions 

about sprint running were made:  

(I.) the heading of the runner’s pelvis during the sprint is expected to be mean zero 

(II.) the velocity-time relationship is expected to resemble that of eq. (4.2).   

This paper describes a novel filtering algorithm incorporating these constraints to estimate 

sprint velocity using data from a single IMU during a 40 m sprint.  An experimental protocol is 
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designed to determine the concurrent validity of the proposed method by comparing the velocity 

estimates to that obtained using photocells. 

Methods 

Algorithm Design 

 The sprint velocity estimation algorithm developed in this study consists of three basic 

steps.   In the first step, a first estimate of the IMU orientation during the sprint is determined.  

During the second and third steps, the corrections given by assumptions (I.) and (II.) respectively 

are employed. See Table 4.1 for a summary of the proposed algorithm. 

Table 4.1: Description of proposed algorithm 
  

     Step 1: Initial Estimate of IMU Orientation 
           -Determine static orientation 
           -Integrate gyroscope angular rate signal 
  
     Step 2: Correction (I.) 
           -Decompose composite quaternion 
           -Linearly detrend raw heading estimate (force to be mean 0) 
           -Propagate correction to determine new estimate of composite quaternion 

  
     Step 3: Correction (II.) 
           -Determine foot contacts 
           -Estimate model velocity curves based on raw velocity at each step 
           -Determine step at which raw velocity best resembles expected relationship 
           -Apply correction to next step and generate new model velocity for next iteration 

  
 

IMU Orientation and Vector Rotations during the Sprint 

The full details of computing the first estimate of the IMU orientation during the sprint 

and of rotating vectors from the sensor frame (𝐹𝑆) to the track frame (𝐹𝑇) are described in 

Appendix A.  The quaternion notation is used to describe the orientation of 𝐹𝑆 relative to 𝐹𝑇 

according to the single rotation through an angle 𝛾 about some axis 𝑼, of unit length, that would 
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align 𝐹𝑇 with 𝐹𝑆 (Figure 4.1) [136].  The parameters of the quaternion (𝑄𝛾) describing this 

orientation allow a parametrization of a rotation matrix that is used to transform vectors in 𝐹𝑆 to 

𝐹𝑇 [20].  The orientation at each instant throughout the sprint is given by integrating the 

gyroscope angular rate signal.  The initial orientation from which integration begins is 

determined using sensor referenced measurements of the world frame gravity and local magnetic 

field reference vectors.  To do this, two rotations that would align the frames instead of one 

composite rotation are considered: first about the world frame vertical axis through an angle 𝛼 

(𝑄𝛼) and second about an axis in the world frame horizontal plane through an angle 𝛽 (𝑄𝛽).  The 

former is referred to as the sensor’s heading and the latter the sensor’s attitude.  First, the 

accelerometer measurement of the gravity vector, which represents the coordinates of the 𝐹𝑇 

vertical axis in 𝐹𝑆, is used to determine the IMU attitude 𝛽 and the axis (𝑯) in the horizontal 

plane about which the sensor may have been rotated to assume this attitude (thus giving 𝑄𝛽) 

[93].  The local magnetic field vector (𝑩) can be used to estimate the heading of the IMU 

because 𝑩 has a component in the horizontal plane of 𝐹𝑇 [23].  First, the measurement of 𝑩 in 𝐹𝑆 

(𝑩𝑆) is rotated to the horizontal plane (𝑩𝐻) by 𝑄𝛽.  The 𝑥 and 𝑦 components of 𝑩𝐻 then give 

the IMU heading 𝛼 relative to 𝑩𝐻 (thus giving 𝑄𝛼) [23].  Then, because the quaternions 𝑄𝛼 and 

𝑄𝛽 are known, 𝑄𝛾 is given by their quaternion product (𝑄𝛾 = 𝑄𝛼 ⊗𝑄𝛽).  Integration using the 

gyroscope angular rate signal then gives an a priori estimate of the IMU orientation (𝑄𝛾−) 

throughout the sprint. 
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Figure 4.1: Description of frame orientations.  The track frame axes are the solid black lines and the 
sensor frame axes are the dashed black lines.  The orientation may be described by a single rotation 
through an angle γ (≈ 50° in the figure) about the axis 𝑼 (green lines) or by two successive rotations: first 
through an angle α (= 20° in the figure) about z�T (red lines) and then a second rotation through β (= 45° 
in the figure) about the axis 𝑯. 
 

Filtering Algorithm: Correction (I.) 

The first correction of the IMU estimate is given by assumption (I.); the heading of the 

runner (𝛼) throughout the entire sprint should be mean zero.  The first estimate of the quaternion 

at each instant during the sprint (𝑄𝛾−) is decomposed into two quaternions,  𝑄𝛽 and 𝑄𝛼−, such that 

𝑄𝛾− is given by their quaternion product as described previously.  The derivation of the general 

decomposition may be found in [136] and the full details of the decomposition in the context of 

utilizing the correction of assumption (I.) are described in Appendix B.  In short, the quaternion 

product 𝑄𝛾− = 𝑄𝛼− ⊗ 𝑄𝛽 allows the parameters of 𝑄𝛾− to be expressed as linear combinations of 

the parameters of 𝑄𝛽 and 𝑄𝛼−.  It is shown that because 𝑄𝛽 and 𝑄𝛼− have orthogonal rotation axes, 
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the resulting linear combinations allow the expression of the a priori heading estimate (𝛼−) in 

terms of just 𝑄𝛾− parameters (which are known from integration).  To employ correction (I.), 𝛼− 

is linearly detrended such that it is mean zero to obtain a better heading estimate (Figure 4.2).   

 

Figure 4.2: The first correction of the proposed algorithm is to force the mean zero assumption of the 
runner’s heading.  The solid grey line is the estimate obtained via integration of the gyroscope angular 
rate signal, the solid black line shows the detrended estimate, and the dashed line is the 0° line (the 
assumed average heading during the sprint). 
 

The corrected heading (𝛼) is then used to construct the quaternion 𝑄𝛼 from which the better 

estimate of the composite quaternion is computed (𝑄𝛾).  Then, 𝑄𝛾 is used to rotate the IMU 

referenced acceleration vector (𝒂𝑆) to the track frame (𝒂𝑇) and the forward component of 𝒂𝑇 

(𝑎𝑥𝑇) is then time integrated to yield an a priori estimate of forward velocity (𝑣−): 

 𝑣− = ∫𝑎𝑥𝑇𝑑𝑑    (4.3) 

The time index of the sprint start (𝑡0) is defined as the first instant at which 𝑣− exceeds one 

standard deviation above the average velocity during the interval between the beginning of 

stance (𝑡𝑠) and the first estimate of the sprint start (𝑡0−).  The latter is a first estimate found by 
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visual inspection of 𝑣− (the last instant before which 𝑣− remains relatively constant during 

stance) and the former is defined as the end of the stillest one-second interval (interval during 

which the sum of the variance of each axis of the accelerometer is a minimum) during the sprint 

start stance (Figure 4.3).   

 
Figure 4.3: Visual inspection of the raw velocity allowed for an estimate of the beginning of the sprint 
start (𝑡0−).  The actual sprint start (𝑡0) was defined as the first instant after 𝑡0− the velocity trace went one 
standard deviation above the mean between stance start (𝑡𝑠) and 𝑡0−.   
 

Filtering Algorithm: Correction (II.) 

To employ correction (II.), modeled velocity based on raw velocity through a previous 

step is used to provide an update to the raw velocity obtained at the current step.  First, steps are 

identified (i.e., from one foot contact to the next) using the 𝑎𝑥𝑇 and 𝑎𝑧𝑇 traces according to a 

previously described method (Figure 4.4) [26].  Then, the idea of employing correction (II.) is 

that if the constants 𝑣𝑚 and 𝜏 from eq. (4.2) characterizing any one subject’s sprint velocity are  
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Figure 4.4: Foot contacts were identified according to a previously validated method [26].  First, zero 
crossings (circles) of the vertical acceleration trace (bottom) are identified.  Then, the peak just prior to 
the zero crossing in the forward acceleration trace (top) identified the foot contacts (diamonds). 
 

known, then the IMU raw velocity estimate may be forced to resemble the general shape of the 

logarithmic curve associated with these constants described in eq. (4.2).  However, the only 

information available to estimate these constants is that from the IMU and specifically the raw 

velocity estimate.  The problem is that if more raw velocity data (i.e., that obtained over a longer 

period of time) is used to estimate 𝑣𝑚 and 𝜏 then more drift error is expected.  On the other hand, 

if less raw velocity data is used, then there is less information available to accurately estimate the 

constants that best characterize any one subject’s sprinting capabilities.  To solve this problem, 

one must first determine which subset of the 𝑣− data best resembles the expected relationship in 
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eq. (4.2).  The subsets of 𝑣− between the start of the sprint and each step beginning at step three 

were considered.  It was inappropriate to begin at step one (i.e., the initial push from stance to the 

first foot contact) because it is biomechanically different than the rest of the steps and is not 

expected to be representative of the sprint capabilities throughout the remainder of the sprint 

[14].  Step three (i.e., using raw velocity data from the initial push to the third foot contact) was 

used instead of step two to avoid any potential bias in the first model estimate based on bilateral 

asymmetries.  To determine the constants 𝑣𝑚 and 𝜏 predicted by each of these subsets, each 

subset of 𝑣− data (low-pass filtered at 1 Hz) from each step (i.e., from 𝑡0 to the time of each foot 

contact) was fit to eq. (4.2) using non-linear least squares curve fitting.  Low-pass filtering of 𝑣− 

from pilot data at 1 Hz was shown to sufficiently remove the error due to the sinusoidal nature of 

the actual sprinting velocity that is not expressed in eq. (4.2).  Lower bounds were placed on 

estimates of the constants 𝑣𝑚 and 𝜏 in eq. (4.2) determined using previously published data  [13, 

14].  Three standard deviations below the mean of the values in these studies defined the lower 

bound for 𝜏 (𝜏𝑚𝑚𝑚).  Then, an estimate is made for the lower bound for 𝑣𝑚 (𝑣𝑚,𝑚𝑚𝑚) using 𝜏𝑚𝑚𝑚, 

𝑣−, and eq. (4.2) by: 

 
𝑣𝑚,𝑚𝑚𝑚 = 𝑣− �1 − 𝑒−

𝑡
𝜏𝑚𝑚𝑚�

−1

 
(4.4) 

The normalized error associated with the curve fitting (squared norm of the residual from least 

squares curve fitting expressed relative to the number of samples used to generate the curve) is 

an index of how well the data resemble the expected relationship [137].  The subset of 𝑣−  data 

for which the normalized error was a minimum defines the 𝑣− trace that best represents the 

expected model in eq. (4.2).  The modeled velocity data (𝑣𝑚𝑚𝑚) at this step is then used to 

provide a correction at the next step.  To apply the correction, the difference (𝑑𝑣) between the 
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linear trend of 𝑣− (𝑙𝑟𝑟𝑟) and the linear trend of 𝑣𝑚𝑚𝑚 (𝑙𝑚𝑚𝑚) from the sample at step 𝑘 − 1 

(𝑠𝑘−1) to the sample at step 𝑘 (𝑠𝑘) is found according to (Figure 4.5): 

 𝑙𝑟𝑟𝑟 =
𝑣𝑠𝑘
−  −  𝑣𝑠𝑘−1

−

𝑠𝑘 −  𝑠𝑘−1
(𝑠) +  𝑣𝑠𝑘−1

−  

𝑙𝑚𝑚𝑚 =
𝑣𝑚𝑚𝑚,𝑠𝑘 −  𝑣𝑠𝑘−1

−

𝑠𝑘 −  𝑠𝑘−1
(𝑠) +  𝑣𝑠𝑘−1

−  

 𝑑𝑣 = 𝑙𝑚𝑚𝑚 − 𝑙𝑟𝑟𝑟 

(4.5) 

where 𝑠 is the sample expressed relative to 𝑠𝑘−1.   

 

Figure 4.5: The difference between the linear trends of the raw velocity estimate (grey dotted line labeled 
𝑙𝑟𝑟𝑟) and the modeled velocity (grey dotted line labeled 𝑙𝑚) between a step (𝑠𝑘) and the previous step 
(𝑠𝑘−1) is used to correct the raw velocity estimate.  The raw velocity estimate is the solid black line and 
the modeled velocity is the dashed black line. 
 

The trust given to the correction 𝑑𝑣 is dependent on the relative normalized residual error 

between 𝑣𝑚𝑚𝑚 generated from step 𝑘 − 1 and step 𝑘 (i.e., 𝐸𝑘−1 and 𝐸𝑘 respectively).  This way 

the 𝑣− trace that best resembles the expected relationship in eq. (4.2) (i.e., has the smaller 
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normalized error) has a greater contribution to the final estimate.  This relative error determines 

the gain (𝐺) that scales the correction 𝑑𝑣 to provide the best estimate of the sprint velocity (𝑣)  

from step 𝑘 − 1 to step 𝑘 according to: 

 𝐺 =
𝐸𝑘

𝐸𝑘 + 𝐸𝑘−1
 

𝑣 = 𝑣− + 𝐺(𝑑𝑣) 

(4.6) 

A new modeled velocity for step 𝑘 and the associated normalized residual error is then generated 

using the new best estimate from eq. (4.6).  The position (𝑝) of the sprinter (distance from the 

start line) is then estimated by time integrating 𝑣 using the trapezoidal method.  Because the 

initial location of the IMU at the start of the sprint is actually behind the start line, an estimate is 

made of its initial location (𝑝0) using the trunk lean angle during stance (𝜃𝑠), the torso length 

(𝐿𝑡) defined as the distance between the IMU and the seventh cervical vertebra (C7), and by 

assuming the location of C7 during stance in the 𝐹𝑇 horizontal plane is near the sprint start line 

(i.e., is directly above the hands).  The trunk lean angle 𝜃𝑠 is calculated given the IMU attitude 

relative to the anatomical frame (𝛽0) determined during an initial static orientation trial (see 

Procedures) and the IMU attitude during stance (𝛽𝑠)  by: 

 𝜃𝑠 = 𝛽𝑠 − 𝛽0 

 

(4.7) 

Then 𝑝0 and 𝑝 are given by: 

 𝑝0 = 𝐿𝑡𝑠𝑠𝑠(𝜃𝑠) 

𝑝 = ∫ 𝑣𝑡𝑘
0 𝑑𝑑 −  𝑝0. 

(4.8) 

The corrections continue for each foot contact as long as the condition 𝑝 < 40 𝑚 is satisfied. 
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Experimental Set-Up 

 An experiment was designed to test the validity of the proposed method to estimate sprint 

velocity during a 40 m sprint.  Five pairs of photocells (Brower Timing Systems, Draper, UT) 

were positioned along a 40 m straight of an indoor track to collect position-time data at 10 m, 15 

m, 20 m, 30 m, and 40 m splits [14].  This timing system includes a touch sensor to initiate the 

timer at the start of the sprint when the sprinter’s hand is lifted off the sensor.  A high-speed 

video camera (Sensor Technologies America, Carrollton, TX) set to sample at 200 fps was used 

to record each subject’s sprint start using MaxTRAQ software (Innovision Systems, 

Columbiaville, MI).  The camera was positioned behind and to the left of the starting line in such 

a way that the IMU and hand (on the touch sensor) were within the camera’s field of view 

(Figure 4.6).  The timestamp of the frame associated with the initial forward movement of the 

IMU and that of the hand coming off the touch sensor were used to synchronize the two systems. 

 

Figure 4.6: A high speed video camera was positioned behind the sprinter at the start of each sprint such 
that the IMU at the subject’s lower back and the thumb on the touch sensor were visible.  The time 
difference between the lift off of the thumb from the touch sensor and the initial forward movement of the 
IMU were used to time-synchronize IMU and photocell data.  
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Subjects 

  Twenty-eight subjects (12 female, 16 male, age: 20.9 ± 2.3 yrs, height: 1.73 ± 0.09 m, 

mass: 71.1 ± 11.7 kg) volunteered to participate in this study.  Subjects were recruited from both 

a collegiate level track team and a general student population and were included in the study if 

they were between the ages of 18 and 35 years old, reported no musculoskeletal injuries within 

the six months prior to testing, regularly participated in physical activity, and were able to 

perform maximal effort sprints pain free.  All subjects provided written consent to participate.  

The Appalachian State University Institutional Review Board approved this study. 

Inertial Measurement Units 

 The Yost Data Logger 3-Space Sensors (YEI Technology, Portsmouth, OH) were the 

IMUs used in this study.  These units have an onboard three-axis accelerometer (range: ±24 g, 

noise density: 650µg/Hz1/2, 12-bit resolution), three-axis gyroscope (range: ±2000º/s, noise 

density: 0.009º/s/Hz1/2, 16-bit resolution), and three-axis magnetometer (range: ±1.3 Ga, 12-bit 

resolution).  Sampled data from each sensor (445.72 ± 0.55 Hz) were written to a MicroSD card 

along with the associated timestamp.  Data from different trials were stored as separate files and 

were downloaded to a computer via USB after data collection for data analysis. 

Procedures 

 Data collection consisted of one testing session in the Appalachian State University 

Biomechanics Laboratory and indoor track.  Subjects’ standing height, torso length, and mass 

were recorded.  Torso length was taken to be the linear distance between the point of intersection 

of the intercristal line with the spine and C7.  The former is defined as the point where a line 

joining the left and right posterior superior iliac spines meet the spine (found via palpation) 

[118].  Torso length was necessary to determine the initial location of the sensor relative to the 
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sprint start line (see Filtering Algorithm: Correction (II.)).  Subjects were then taken through a 

general and sprint specific warm up.  To finish the sprint specific warm up, subjects performed 

sprint starts from a four-point stance (two hands and two feet) without blocks to familiarize 

themselves with the sprint start they would be using during testing (Figure 4.6).  Next, the IMU 

was attached to the lower back of each subject using an elastic strap and tape.  The location of 

the IMU on the spine was at the intersection of the aforementioned intercristal line (Figure 4.6) 

[27].  After the IMU began recording data, subjects stood at the start line and performed a jump 

followed by a five second standing static trial followed by another jump.  During the static trial, 

care was taken to ensure the subjects’ feet and pelvis were aligned parallel to the forward axis of 

𝐹𝑇 while standing straight up and still as possible.  The jumps allowed the identification of this 

static trial when visually observing the accelerometer data during post-processing.  The static 

trial was necessary to initially align 𝐹𝑆 with 𝐹𝑇 and the anatomical frame later during stance. 

Subjects then assumed their four-point stance with one hand placed on the touch sensor (Figure 

4.6).  They were instructed to be as still as possible and were given a three second countdown 

before the start of a maximal effort 40 m sprint.  This sequence was repeated twice more for 

three total sprints for each subject.  The equations used to model sprint velocity given position-

time data assume the sprinter is in a non-fatigued state.  Thus, each subject was given a 

minimum of three minutes rest between sprints or until they felt fully recovered.   

Data Reduction 

 Each subjects’ anthropometric data and the split times of their fastest 40 m sprint were 

saved to a Microsoft Excel sheet.  A custom MATLAB program (MathWorks, Natick, MA) was 

written to process photocell position-time and IMU data.  The photocell split times were fit to eq. 

(4.1) to obtain the constants 𝑣𝑚 and 𝜏 using non-linear least squares curve fitting.  These 
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constants were then used to estimate each subject’s instantaneous velocity according to eq. (4.2) 

for time domain 𝑡: 𝑡0 → 𝑡40 (where 𝑡𝑖 is the time at position 𝑖) of equally spaced discrete time 

values according to the mean IMU sampling frequency.  The IMU estimate of sprint velocity was 

given according to the previously described algorithm.  The initial standing static orientation trial 

allowed the determination of the IMU attitude relative to the anatomical frame (𝛽0) using the 

accelerometer [93, 106].  The trunk lean during stance is then given according to eq. (4.7) to 

determine the initial location of the IMU relative to the sprint start line by eq. (4.8).  Because the 

surface of the IMU (i.e., the 𝑦-𝑧 plane) was aligned flush to the subject’s skin, the assumption is 

made that 𝐹𝑆 and anatomical frame forward axes were aligned.  Further, because the anatomical 

frame and 𝐹𝑇 forward axes were aligned during this static orientation period, so also were the 

forward axes of 𝐹𝑆 and 𝐹𝑇.  Thus, one could estimate the heading (𝛼0) of the track frame relative 

to the local magnetic field vector given 𝛽0 (see IMU Orientation and Vector Rotations).  The 

heading of the IMU relative to this local magnetic field vector during the sprint stance (𝛼𝑠) is 

then determined accordingly given the stillest one second interval during stance.  Finally, the 

initial estimate of the IMU heading 𝛼 relative to the track frame is then given by: 

 𝛼 = 𝛼𝑠 − 𝛼0. (4.9) 

This initial heading estimate is dependent upon the assumption that the local magnetic field 

vector is the same at both locations (i.e., at the subject’s sacrum when standing at the sprint start 

line and when in their four point stance).  However, any error due to this assumption is later 

removed by correction (I.).  The gyroscope bias was determined during the standing static 

interval before each trial and removed from the angular rate signal before integration. 
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Statistical Analysis 

 The maximal step velocity (maximal average velocity from one foot contact to the next) 

and average interval velocity for the 0 m – 10 m, 10 m – 20 m, 20 m – 30 m, and 30 m – 40 m 

intervals were compared between methods.  The absolute error in the IMU estimate was 

quantified using using root mean square error (RMSE) and relative error (absolute percent error).  

The Pearson product moment correlation coefficient (r) was used to determine how well the IMU 

estimate scaled with that of the reference photocell method.  Finally, Bland-Altman 95% limits 

of agreement (LOA) were used to assess the reliability of the method.  The error in the IMU 

estimate of instantaneous velocity for each subject was quantified using RMSE and r.  The 

average RMSE and r values across all subjects was then determined to assess the ability of the 

IMU method to estimate instantaneous velocity.  For the Bland-Altman analysis, the normality of 

the difference distributions were tested using the Shapiro-Wilk test [121].  Data were 

transformed using the natural logarithm if differences were not normally distributed or showed a 

strong (≥ 0.75) relationship with the mean of the measurements [121].  For these cases, the anti-

log bias and LOA are given.  Statistical significance for all statistical tests was set a priori at a 

level of 0.05. 

Results 

 The split times of the subjects’ best 40 m sprint were: 𝑡10 = 2.02 ± 0.16 𝑠, 𝑡15 =

2.72 ± 0.24 𝑠 𝑡20 = 3.35 ± 0.31 𝑠, 𝑡30 = 4.57 ± 0.46 𝑠, and 𝑡40 = 5.81 ± 0.61 𝑠.  The range 

of RMSE of the IMU maximal and average interval velocity estimates was between 0.34 m/s and 

0.67 m/s and the relative error was between 5.09% and 7.13% (Table 4.2).  IMU estimates of 

maximal and average interval velocities showed significant (p < 0.01) relationships (r = 0.79 – 

0.83) with photocell estimates (Table 4.2). Table 4.3 and Figures 4.7 and 4.8 show the results of 
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the Bland-Altman analysis.  All measurement differences were normally distributed and showed 

no linear trend with the measurement means and thus no data were transformed.  The bias in the 

IMU estimate of maximal and average interval velocities were between -0.31 m/s and 0.13 m/s 

(Table 4.3).  The RMSE for instantaneous velocity was 0.70 ± 0.26 m/s and the average 

correlation coefficient was r = 0.97 ± 0.01. Sample velocity-time curves comparing the methods 

are shown in Figure 4.9. Figure 4.10 shows group averaged velocity and position vs time data. 

 

Table 4.2: Comparison of average interval and maximal velocity estimates from the IMU and photocell 
method.  **Denotes significance at the 0.01 level. Relative error: absolute percent difference between 
IMU and photocell estimates, RMSE: root mean square error between IMU and photocell estimates, r: 
Pearson product moment correlation between IMU and photocell estimates. 
 

    Relative Error [%] RMSE [m/s] r   
      
   Avg. Interval Velocity:  0m - 10m 5.09 ± 4.08 0.34 0.81**   
   10m - 20m 5.51 ± 4.54 0.56 0.83**   
   20m - 30m 6.11 ± 5.50 0.60 0.80**   
   30m - 40m 7.02 ± 4.16 0.66 0.79**   
  

    
  

   Max Velocity 7.13 ± 4.42 0.67 0.80**   
 
 
Table 4.3: Results from the Bland-Altman analysis assessing the agreement between IMU and photocell 
estimates of average interval and maximal velocity (all units m/s). LOA: Bland-Altman 95% limits of 
agreement. *Denotes a significant bias at the 0.05 level. 
 

    IMU  Photocell       
  

 
Mean ± SD Mean ± SD Bias LOA   

  Avg. Interval 
Velocity:  0m - 10m 4.71 ± 0.35 4.94 ± 0.43 -0.23 -0.73, 0.27   
   10m - 20m 7.48 ± 0.72 7.79 ± 0.85 -0.31 -1.24, 0.62   
   20m - 30m 8.05 ± 0.93 8.17 ± 0.97 -0.12 -1.30, 1.06   
   30m - 40m 8.33 ± 1.06 8.27 ± 1.02 0.05 -1.25, 1.36   
  

     
  

   Max Velocity 8.42 ± 1.07 8.29 ± 1.02 0.13 -1.19, 1.45   
       



62 
 

 



63 
 

 

Figure 4.8: Bland-Altman plots comparing the IMU and photocell estimates of maximal sprint velocity. 
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Figure 4.9: Comparing raw velocity obtained from direct integration (solid grey line), filtered velocity 
according to the proposed algorithm (solid black line), and model velocity obtained from the reference 
photocell method (dashed black line). Each curve represents a single subject. (a.) an example where direct 
integration overestimated the true velocity, (b.) an example where direct integration drastically 
underestimated the true velocity. 
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Figure 4.10: The average model velocity (a.) generated from the IMU method (dashed line) was 
compared to the reference photocell method (solid line) as well as the corresponding sprint distance (b.).  
The dotted and dashed-dot lines show the standard deviations of the photocell and IMU method sprint 
data respectively.  The proposed IMU method accurately estimated the constant 𝑣𝑚, but significantly 
underestimated the time constant 𝜏, which may explain some of the error in the velocity estimates early in 
the sprint.  The position graph shows this resulted in a slight overestimation of 𝑡40 for the IMU method 
(average 𝑡40 photocell: 5.80 s, average 𝑡40 IMU: 5.94 s). 
 

Discussion 

This paper describes a novel filtering algorithm to estimate sprint velocity during a 40 m 

sprint using data from only a single IMU.  The algorithm makes corrections by forcing known 

constraints characteristic of sprint running on the IMU estimate.  These constraints were (I.) the 

heading of the sprinter must be mean zero during the sprint (aligned with the track) and (II.) the 

velocity-time characteristics of the sprint should resemble that of eq. (4.2).  The Bland-Altman 

plots show a small bias from the IMU estimates for the average interval and maximal sprint 

velocity estimates (between -0.23 m/s and 0.13 m/s).  The velocity estimates from the IMU 
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method were more consistent during the first 20 m compared to estimates later in the sprint 

(more narrow LOA), but had a slightly greater bias.  The relative error and RMSE slightly 

increased later in the sprint with the greatest error being in the maximal velocity estimate (7.13% 

and RMSE = 0.67 m/s).  This error was similar to the RMSE of the instantaneous sprint velocity 

estimate (RMSE = 0.70 m/s).  Previous studies using lasers to measure sprint velocity suggest 

the actual instantaneous velocity of a sprinter is sinusoidal in nature (due to the braking forces at 

foot contact) [50, 54].  This was also seen in the IMU estimates (Figure 4.9), but it is not, 

however, expressed in the model of eq. (4.2).  This may explain some of the error in the 

instantaneous velocity estimate, but it is unknown to what extent.  This would not at first be 

expected to have as much of an effect on the estimated maximal step velocity.  This is because 

the sinusoidal nature would be cancelled after averaging over the interval between subsequent 

foot contacts.  However, error in the estimate of the foot contacts may have resulted in an 

inaccurate averaging window that included velocity data above or below the actual mean, which 

may explain some of the error in the maximal step velocity estimate.  

Modeled data generated from estimates earlier in the sprint provided updates to raw 

estimates later in the sprint.  Thus, one may expect there to be a relationship between errors in 

the estimate early in the sprint (0 m – 10 m) compared with those from later (30 m – 40 m).  

However, a post-hoc analysis showed no such relationship (r = 0.08).  In theory, if the raw  

estimate from the IMU very closely resembles that from eq. (4.2), but with a consistent bias, the 

algorithm has no way of detecting the error.  It relies on the divergence of the raw estimate from 

the expected model to make corrections.  This hypothesis was not tested directly, but may be 

suggested by the strong correlations and narrow range of relative errors (5 –7%).  The strong 
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relationships suggest the proposed IMU method may be able to discern the sprint velocity 

capabilities equally as well as the reference method.   

Ultimately, the best estimate of sprint velocity using the proposed IMU method would be 

when the filtered IMU velocity and photocell position-time data yield the exact same modeled 

velocity-time curve.  This is equivalent to determining the same constants 𝑣𝑚 and 𝜏 in eq. (4.2).  

Therefore, a post-hoc comparison was performed comparing these constants characterizing the 

sprints of each subject determined by both methods.  The results suggest inaccurate estimates of 

the time constant 𝜏 may have contributed more than the constant 𝑣𝑚 to the error in the estimated 

velocity.  The IMU estimate of 𝑣𝑚 (8.32 ± 1.15 m/s) was nearly exactly the same as the reference 

measurement (8.32 ± 1.05 m/s).  However, the 𝜏 estimate from the IMU method (1.09 ± 0.21 s) 

was significantly greater (p < 0.01) than the reference estimate (0.93 ± 0.13 s).  This can be seen 

in the resulting model velocity-time curves and distance-time curves given these constants 

(Figure 4.10).  This graphic comparison and the results from the Bland-Altman analysis (Table 

4.3) seem to suggest consistent underestimates early in the sprint may have resulted in greater 

estimates of the model time constant 𝜏.  It is unclear what led to these underestimates.  One 

potential explanation is that low pass filtering the raw velocity signal removed greater velocities 

early in the sprint and resulted in a bias towards a lesser velocity.  The raw velocity was low pass 

filtered in an attempt to remove the natural sinusoidal nature of the true velocity when generating 

model curves.  Without low-pass filtering, velocities later in the sprint would have been 

associated with greater error in the curve fitting.  This would suggest a velocity-time curve 

markedly different from the a priori expectation described in eq. (4.2) and lessen the 

contribution of these estimates to the final velocity prediction according to eq. (4.6).  Future 

research should focus on developing techniques to compensate for this error.  Another potential 
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explanation is that there was error in the reference estimates before 10 m.  The average 10 m 

time for this subject sample was 2.02 s before which there was no position-time data that may 

provide a better velocity estimate before 10 m.  The position-time splits chosen in this study 

were in accordance with previously published study designs [14], but perhaps incorporating split 

times before 10 m would enable the testing of this potential source of error in future research. 

To the author’s knowledge, the study by [27] is the only other to present results assessing 

the validity of sprint velocity estimates (average interval velocity and peak velocity) from a 

sacral worn IMU.  They, however, used data from a 100 m sprint and a much smaller sample size 

(five male sprinters).  The authors state the use of propriety algorithms and other constraints 

applied to correct the estimate, however the details were not given.  The results from our study 

are comparable with those from [27] with both showing strong relationships (≥ 0.75) between 

IMU estimates and reference measurements for both average interval and maximal sprint 

velocity (with the exception of the 0 m – 10 m split from their study where r = 0.32).   

 The corrections provided to the initial raw velocity estimates were based on modeled data 

from eq. (4.2).  Therefore, the limitations of the model are also limitations for the method 

described here.  Namely, the sprint must be performed in a non-fatigued state and must occur in 

a straight line.  Thus, for example, the technique may not be used to assess the sprint velocity 

through the curve of the track because the average heading of the runner is not zero in this case.  

Also, it is possible that the IMU attitude estimate obtained from direct integration was subject to 

drift error.  No corrections were made on the attitude estimate because it cannot be assumed to be 

mean zero like the heading estimate.  Errors in the attitude estimate may result in an insufficient 

rotation of the sensor referenced acceleration vector such that after integration the velocity 

estimate is under or overestimated.  However, the fusion of previous model data with raw data 
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later in the sprint could compensate for this error.  An example where this may have occurred is 

shown in Figure 4.9b where the raw velocity from direct integration was noticeably 

underestimated.  The error was detected, however, by the filtering algorithm and likewise 

corrected while still maintaining the sinusoidal waveform.  Finally, this method has not been 

tested for use in sprints longer than 40 m.  For longer sprints, beyond the acceleration phase, eq. 

(4.2) may be an inappropriate model because there is no expression for any potential decrease in 

sprint velocity that may occur later in the sprint.  An alternate model to eq. (4.2) that is bi-

exponential, has been proposed that could potentially account for this possible decrease [48].  

Future research should investigate the use of this model, or a modified version incorporating the 

bi-exponential model, to estimate sprint velocity for longer sprint distances. 

Conclusion 

 Wearable sensors are becoming increasingly popular for field-based performance 

assessments.  The sprint velocity estimation method described in this paper broadens the scope 

of IMU applications in this context.  The results from the Bland-Altman analysis, low relative 

errors, low RMSE, and strong correlations suggest the validity of the proposed IMU method.  

Post-hoc analyses suggest potential sources of the errors that may be targeted in future research.  

The error in the estimation of instantaneous velocity is likely due to the sinusoidal nature of true 

sprinting velocity that is not expressed in the reference method.  Further, the small errors did not 

prevent the method from differentiating sprint velocity capabilities of sprinters and non-sprinters 

equally as well as the reference method.  Other reference information that does not diminish the 

convenience aspect of the proposed method (e.g., onboard GPS for outdoor use) may be included 

to further improve the measurement and eliminate some of the limitations in this study.  This 

should be the focus of future research.
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Chapter 5: Concurrent Validity of an IMU-based Method to Estimate Kinetic Determinants of 

Sprint Performance 

Abstract 

Inertial measurement units (IMUs) are becoming more popular in field-based human movement 

analysis, however, an IMU-based system to measure specific sprint-related kinetic parameters 

has not been reported.  The purpose of this study was to determine the validity of a novel IMU-

based system to estimate these kinetic parameters by comparison to a recently validated 

photocell method.  Twenty-eight subjects (sprinters and non-sprinters) performed three 40 m 

sprints with a single IMU attached to their sacral region.  Position-time data along with subject 

anthropometrics and atmospheric data (temperature and barometric pressure) was used to 

estimate the magnitude and orientation of the ground reaction force (𝑭) and velocity (𝑣).  The 

proposed IMU method uses an estimate of the IMU’s orientation to express sensor referenced 

acceleration in the track frame to then estimate 𝑭 and 𝑣.  Sprint performance variables of each 

subject’s best sprint were compared between the two methods using root mean square error 

(RMSE), Pearson’s product moment correlation coefficient (r), and Bland-Altman analysis.  The 

IMU method gave valid estimates of directional 𝑭 and power measures most relevant to 

performance compared to the photocell method supported by relatively low RMSE and bias and 

significant correlations (p < 0.01).  The IMU estimate of the next best predictors of performance 

showed significant correlations (r = 0.78 - 0.79, p < 0.01) with photocell estimates.  Inaccurate 

estimates were observed only for those variables that were least related to performance.  The 

proposed method, which requires a single IMU, may be considered an appropriate means to 

estimate the sprint performance variables that are most important to an evaluation.  Future 

research should investigate the incorporation of other parameters to improve the scope of the 

assessment and some of the observed error. 



71 
 

Introduction  

Recent research in sprinting biomechanics has identified several kinetic parameters to be 

key determinants of sprint acceleration performance [2, 138].  Newtonian mechanics lead to an 

expectation that the forward component (𝐹𝑥) of the ground reaction force (𝑭) underlies the 

primary mechanism by which one accelerates their center of mass (COM) forward during a 

sprint.  This theory has been supported empirically from sprint data of a broad range of 

performance capabilities (elite sprinters to untrained subjects) [2, 3, 5, 6, 8, 9].  In several of 

these studies the percentage of 𝑭 that is comprised of 𝐹𝑥, called the ratio of force (𝑅𝑅), has been 

used as an index of one’s technical ability to optimally orient 𝑭 to maximize 𝐹𝑥.  An evaluation 

of acceleration performance must also consider how these technical parameters change with 

increasing velocity (𝑣).  Due to the force-velocity property of muscle [13, 139] and lesser foot 

contact times [2, 33], 𝐹𝑥 and 𝑅𝑅 would be expected to decrease with increasing sprint velocity.  

This negative force-velocity trend in sprinting is well described by a linear relationship [2, 14, 

47] and the slope of this line (𝑠𝑠𝑠 for 𝐹𝑥-𝑣 and 𝑑𝑑𝑑 for 𝑅𝑅-𝑣 relationships) has been used to 

assess sprint performance and ballistic tasks in general [2, 3, 5, 140].  Another parameter 

highlighting force-velocity capabilities during sprinting is average and maximal forward power 

(𝑃�𝑥 and 𝑃𝑚𝑚𝑚 respectively) which has also been shown to be a determinant in sprint performance 

[2, 3, 141]. 

 These kinetic parameters are traditionally measured using a force plate.  To assess a 

sprint with in ground force plates one would either have to line the entire sprint distance with 

force plates or perform multiple sprints such that each sprint measures a different foot contact or 

set of foot contacts; the combination of which provides a virtual single sprint [2, 11, 14, 138].  

These methods are not the most appropriate in non-research settings because of the high cost of 
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the equipment and because the method is tedious and time consuming.  Instrumented treadmills 

may also be used [47], but they too are expensive and may alter acceleration mechanics 

compared to that over ground [43].   

In 2015, Samozino et al. [14] validated a simple method (requires one 40 m sprint in field 

conditions) to estimate kinetic determinants of sprint acceleration performance.  The technology 

required to perform the assessment is much more affordable relative to the aforementioned 

methodologies.  Their method only needs accurate and sufficient position-time or velocity-time 

data which they obtained using photocells and radar respectively.  More recently in [15],  

smartphone video data was shown to be able to accurately estimate position-time information 

that may be used in the method proposed by Samozino et al.  The method uses a macroscopic 

model of the sprinter’s COM kinematics during the sprint derived by Furusawa et al. in 1927 

[13]. The photocell method proposed by Samozino et al. fits position-time data to ultimately 

estimate net forward acceleration of the COM.  Using Newton’s 2nd Law and environmental 

information, the propulsive forward force can be estimated. Kinetic estimates from the method 

showed good agreement with the same from a force plate suggesting its validity.  Although this 

method has shown promise since its validation [57, 58], it is limited in its ability to provide a 

comprehensive assessment due to its macroscopic nature.  In the original validation study, 

Samozino et al. report the step-by-step comparison of the estimates of 𝑭 showed the force plate 

values are scattered about the values predicted by the model.  They attribute this error to inter-

step variability that may be present due to a bilateral asymmetry or inter-sprint variability.  

Further, other parameters important to sprint performance cannot be determined using the 

photocell method.  These other parameters include, for example, step frequency [3], joint angles 

[35], and the braking force at foot contact [142]. 
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 Inertial measurement units (IMUs) may provide the means to develop a more 

comprehensive sprint assessment system.  IMUs are small, low-cost sensors that allow 

unrestricted field-based performance assessments.  IMUs house onboard three-axis 

accelerometers, gyroscopes, and magnetometers, the combination of which has allowed several 

different applications in biomechanics research such as joint kinematics [20, 22], identification 

of foot contact events [24, 26], as well as kinetic parameters during running and jumping [17, 

31].  Three-dimensional estimates of 𝑭 are possible with an array of IMUs attached at each 

segment by traditional inverse dynamics [143].  However, an elaborate array of sensors begins to 

make the method less applicable to non-research settings due to cost and greater set-up time.  In 

Chapter 3, it was shown that despite several limitations it might be possible to use a single IMU 

to estimate step-average directional and resultant 𝑭 during a linear sprint start.  More important 

to sprint assessment applications was the finding that the IMU method gave valid estimates of 

the orientation of 𝑭 and specifically 𝑅𝑅.  Likewise, Chapter 4 described the possibility of using a 

single IMU to estimate sprint velocity using an adaptive gain filter implementing the velocity 

model described by Furusawa et al. [13].  With estimates of 𝑭 and velocity, one may potentially 

be able to estimate those parameters that are most important to assess sprint acceleration 

performance.  These methods require a single IMU strapped to the lower back and thus provide 

an attractive methodology to users in field-based settings for the purpose of research and/or 

sport.  However, the validity of an IMU based methodology to assess sprint performance is 

unknown.  Thus, the purpose of this study was to investigate the use of a single IMU strapped to 

the lower back to assess sprint acceleration performance.  Sprint performance variables from the 

proposed IMU method were compared to those derived from the aforementioned photocell 

method.  
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Methods 

Subjects 

 Subjects were recruited from both a collegiate level track team (male and female 

sprinters) and the general student population and were included in the study if they were between 

the ages of 18 and 35 years old, reported no musculoskeletal injuries within the six months prior 

to testing, and could perform maximal effort 40 m sprints pain free.  Twenty-eight subjects (12 

female, 16 male) volunteered to participate.  The Appalachian State University Institutional 

Review Board approved this study and all subjects gave written consent to participate. 

Experimental Protocol 

  The experimental protocol used to validate the proposed method was designed similar to 

that described by Samozino et al. (2015) [14].  In their study, they validated the photocell 

method by comparison to a force plate.  Here, the force plate method is replaced with the 

proposed IMU method.  Five pairs of photocells were set up to collect position-time data at 10 

m, 15 m, 20 m, 30 m, and 40 m splits during a maximal effort sprint.  Subjects performed three 

sprints with a minimum of three minutes rest between subsequent sprints or until they felt fully 

recovered.  Prior to any maximal effort movements, subjects were taken through a standardized 

general and sprint specific warm-up.  The warm-up ended with 10 m sprint starts from the four-

point stance they would be using during testing.  An IMU was attached to the sacral region (i.e., 

the point of intersection of the spine with the intercristal line) using an elastic strap and tape.  

The intercristal line connects the left and right posterior superior iliac spines and was found via 

palpation [118].  Before taking their sprint start stance, subjects performed two jumps with a 

five-second standing static trial in between.  The jumps were necessary to accurately determine 
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the start and end of the static trial which was used during data post-processing to determine 

initial IMU orientation. 

Instruments 

 The IMUs used in this study were Yost Data Logger 3-Space Sensors (YEI Technology, 

Portsmouth, OH).  These units have an onboard three-axis accelerometer (range: ±24 g, noise 

density: 650µg/Hz1/2, 12-bit resolution), three-axis gyroscope (range: ±2000º/s, noise density: 

0.009º/s/Hz1/2, 16-bit resolution), and three-axis magnetometer (range: ±1.3 Ga, 12-bit 

resolution).  Sampled data (445.72 ± 0.55 Hz) were stored as separate files to an on board 

memory and were downloaded to a computer via USB after data collection for post-processing.  

Position-time data during the sprint were obtained using photocells (Brower Timing Systems, 

Draper, UT).  The photocell timer was initiated at the instant the sprinter’s hand lifted off a 

pressure sensor located at the sprint start line.  A high-speed video camera (Sensor Technologies 

America, Carrollton, TX) recorded the sprint start at 200 fps using the MaxTRAQ software 

(Innovision Systems, Columbiaville, MI).  The camera was positioned behind the runner such 

that the hand on the pressure sensor and the IMU attached to the subject’s lower back were 

clearly visible in the camera’s field of view.  The times associated with the lift of the hand off the 

pressure sensor and the first movement of the IMU at the start of the sprint were used to time-

synchronize the photocell and IMU data (see Chapter 4).  Environmental temperature and 

barometric pressure were measured using the Vantage Vue weather console (Davis Instruments 

Corporation, Hayward, CA) which were necessary to estimate the drag force (see Data Analysis). 
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Data Reduction 

To compare IMU based results with the reference photocell method position-time data  

obtained using the photocells were fit to the model proposed by Furasawa et al (1927), where:  

 𝑝 = 𝑣𝑚 �𝑡 + 𝜏𝑒−
𝑡
𝜏� − 𝑣𝑚𝜏 

(5.1) 

 𝑣 = 𝑣𝑚 �1 − 𝑒−
𝑡
𝜏� (5.2) 

 𝑎 = �
𝑣𝑚
𝜏
� 𝑒−

𝑡
𝜏 (5.3) 

In eqs. (5.1) – (5.3), the position (𝑝), velocity (𝑣), and acceleration (𝑎) are related to the time 

after the start of the sprint (𝑡) according to the two constants 𝑣𝑚 and 𝜏.  The photocell method 

proposed by Samozino et al. fits position-time data to eq. (5.1) to estimate 𝑣𝑚 and 𝜏 from which 

the net forward acceleration of the COM is given from eq. (5.3).  Then, the net forward force 

(𝐹𝑁,𝑥) is given by the subject’s mass (𝑚) and the net forward acceleration 𝑎 from eq. (5.3) 

according to Newton’s 2nd Law: 

 𝐹𝑁,𝑥 = 𝑚𝑚 (5.4) 

This net force is the sum of 𝐹𝑥 and the drag force (𝐹𝐷) where: 

 𝐹𝑁,𝑥 = 𝐹𝑥 + 𝐹𝐷 (5.5) 

and: 

 𝐹𝐷 = −𝐶𝐶𝐶(𝑣 − 𝑣𝑎𝑎𝑎)2  (5.6) 

In eq. (5.6), 𝐶 = 0.9 is the coefficient of drag (values vary between 0.8 and 1.0 in wind tunnel 

experiments so the average is used [42]), 𝐴 is an estimate of the runner’s frontal area, 𝜌 is the air 

density, and 𝑣𝑎𝑎𝑎 is the wind velocity relative to the ground [14].  The frontal area 𝐴 is estimated 

given the runner’s height (ℎ) in meters and 𝑚 in kilograms according to, 

 𝐴 = (0.2025ℎ0.725𝑚0.425)0.266 (5.7) 
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and the air density 𝜌 is given from the barometric pressure (𝑃) in Torr, the temperature (𝑇) in ℃, 

and the air density 𝜌 at 760 Torr and 273℃ (𝜌0 = 1.293 kg/m) according to: 

 𝜌 = 𝜌0 �
𝑃
760

� � 273
273+𝑇

�  (5.8) 

Using this method, 𝐹𝑥 and 𝑣 can be estimated. Further, 𝐹𝑧 (vertical component) and 𝐹𝑟𝑟𝑟 

(resultant force) is estimated by assuming 𝐹𝑧 to be equal to bodyweight over a complete step 

interval. From this, ratio of force (𝑅𝑅) can be calculated as: 

𝑅𝑅 = 𝐹𝑥

�𝐹𝑥2+𝐹𝑧2
∙ 100         (5.9) 

In eq. (5.9) the denominator approximates the resultant magnitude 𝐹𝑟𝑟𝑟 where the lateral 

component is considered negligible [2, 14].  

An IMU estimate of velocity could also predict the constants 𝑣𝑚 and 𝜏 which allow an 

estimate of 𝑭 in the same way as the photocell method.  However, in this study, 𝑭 was estimated 

according to the method described in Chapter 3 to avoid the shortcomings of using a 

macroscopic model.  That is, it is assumed that the location of the IMU at the sacral region 

provides a sufficient approximation of the COM location during the sprint.  Then, the 

accelerometer measurement of the acceleration vector represents the net acceleration of the COM 

in the sensor frame.  The orientation of the IMU during the sprint is obtained initially during 

stance using the accelerometer and magnetometer and then by integrating the angular rate 

measured by the gyroscope during the sprint (see Chapters 3 and 4).  An estimate of the 

orientation then allows the sensor referenced COM acceleration vector to be rotated and 

expressed in terms of the track frame.  Sensor estimates obtained over time are subject to drift 

error and noise, especially during a very dynamic task like sprinting.  Thus, acceleration is time-

integrated to get a raw estimate of velocity which is then filtered according to the method 



78 
 

described in Chapter 4.  The filtered velocity is then differentiated to provide a better estimate of 

the net forward COM acceleration.  At this point, the IMU provides an estimate of 𝑣 from the 

filtering algorithm (Figure 5.1) and also 𝑭 according to eqs. (5.4) – (5.8). 

 

 

Figure 5.1: Comparison of position-time (a.) and velocity-time (b.) estimates from the IMU method 
(solid black line) and reference photocell method (dashed red line) for a typical subject. 
 

Performance Variables 

 Foot contact events are determined using the antero-posterior acceleration trace according 

to the method described by Wixted et al. [26].  Then, photocell and IMU estimates of 𝐹𝑥, 𝐹𝑧, and 

𝑣 are averaged over each step (i.e., one foot contact to the next) [14].  Forward power (𝑃𝑥) at 

each step is given by the product of step averaged 𝐹𝑥 and 𝑣.  𝑅𝑅 is given according to eq. (5.9) 
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and the slope of the linear relationship between 𝑅𝑅 and step averaged 𝑣 provides an estimate of 

𝑑𝑑𝑑.  The denominator in eq. (5.9) provides an estimate of 𝐹𝑟𝑟𝑟 where the lateral component of 

𝑭 is assumed negligible [14].  The slope of the linear 𝐹𝑥 and 𝑣 relationship determines 𝑠𝑠𝑠 and 

extrapolation of this line to the intercepts of the x and y axis provides an estimate of the 

theoretical maximal forward force (𝐹0) and velocity (𝑣0) respectively.  Average values of 𝐹𝑥, 

𝐹𝑟𝑟𝑟, 𝑅𝑅, and 𝑃𝑥 over the whole sprint (𝐹�𝑥, 𝐹�𝑟𝑟𝑟, 𝑅𝑅����, and 𝑃�𝑥 respectively) were determined as 

well as the maximal forward power output (𝑃𝑚𝑚𝑚).  The latter was taken to be the peak of the 

second order polynomial obtained using the quadratic relationship between the step averaged 𝑃𝑥 

and 𝑣 values [2, 14].   

Statistical Analysis 

 Data from each subject’s best sprint (fastest 40 m time) were compared between methods.  

Per step variables (𝐹𝑥, 𝐹𝑧, 𝐹𝑟𝑟𝑟, and 𝑅𝑅) were compared between methods using root mean square 

error (RMSE), Pearson’s product moment correlation coefficient (r), and Bland Altman 95% 

limits of agreement (LOA) for repeated measures [144].  Variables that describe the entire sprint 

(𝐹�𝑥, 𝐹�𝑟𝑟𝑟, 𝑅𝑅����, 𝑃�𝑥, 𝑃𝑚𝑚𝑚, 𝐹0, 𝑣0, 𝑠𝑠𝑠, and 𝑑𝑑𝑑) were compared between methods using RMSE, r, 

and LOA.  Correlation coefficients were used to determine the strength of the relationship 

between performance variables and sprint performance (i.e., 40 m time: 𝑡40) using estimates 

from the reference photocell method.  Further, because there was an equal number (n = 8) of 

male sprinters (S) and non-sprinters (NS), a two-sample, independent t-test was used to 

determine any differences between the performance variables of each group for both methods.  

For the Bland-Altman analysis, data were transformed using the natural logarithm where 

differences were not normally distributed (determined by the Shapiro-Wilk test) or where a 

strong relationship (r ≥ 0.75) was observed between the differences and means of the 
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measurements [121].  In these cases, the anti-log bias and LOA are given.  The bias was 

considered significant (p ≤ 0.05) if the line of identity lie outside the 95% confidence interval of 

the mean bias [121].  The clinical significance of correlation coefficients were determined a 

priori according to the following criteria: 0.00 to 0.25 (little to none), 0.25 to 0.50 (fair), 0.50 to 

0.75 (moderate), and > 0.75 (strong) [120].  A level of significance was set a priori at 0.05 for all 

statistical tests.   

Results 

 Subject anthropometrics and split times are shown in Table 5.1.  The repeated measures 

Bland-Altman analysis show the bias in the IMU estimate of per step variables 𝐹𝑥, 𝐹𝑧, 𝐹𝑟𝑟𝑟, and 

𝑅𝑅 were 6.13 N, -2.74 N, -4.29 N, and 1.14%, respectively.  The LOA, reported by (lower limit, 

upper limit) were the following: 𝐹𝑥 (-145.93 N, 158.56 N), 𝐹𝑧 (-231.12 N, 225.63 N), 𝐹𝑟𝑟𝑟 (-

247.56 N, 238.98 N), and 𝑅𝑅 (-13.34%, 15.62%).  IMU estimates were significantly (p < 0.01) 

correlated (r = 0.70 to 0.91) with photocell estimates of all per step variables and RMSE was 

7.4% for per step 𝑅𝑅 and RMSE was between 79.52 N to 124.2 N for per step 𝑭 (Figure 5.2). 

Significant correlations (p < 0.05) were found between all performance variables and sprint 

performance (i.e., 𝑡40) except for 𝑠𝑠𝑠 and 𝑑𝑑𝑑 (Table 5.2 and Figure 5.3).  IMU and photocell 

estimates were significantly (p < 0.01) correlated (r = 0.71 to 0.89) for all performance variables 

except 𝑑𝑅𝐹 (Table 5.2).  The Bland-Altman analysis showed low, insignificant bias and narrow 

LOA for 𝑅𝑅����, 𝐹�𝑥, 𝑃�𝑥, and 𝑣0, but not 𝐹�𝑟𝑟𝑟, 𝑃𝑚𝑚𝑚, 𝐹0, 𝑠𝑠𝑠, or 𝑑𝑑𝑑 (Table 5.2). Both methods 

found 𝑅𝑅����, 𝐹�𝑥, 𝐹�𝑟𝑟𝑟, 𝑃�𝑥, 𝑃𝑚𝑚𝑚, and 𝑣0 to be significantly different (p < 0.01) between male 

sprinters and non-sprinters (Table 5.3).  Figure 5.4 shows the compares IMU and photocell 

estimates of the various performance characteristics throughout the 40 m sprinting task. 
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Table 5.1: Subject anthropometric characteristics and 40 m split times. **Denotes a significant difference 
between Male S and Male NS at the 0.01 level. 
  Female (n = 12) Male (n = 16) Male S (n = 8) Male NS (n = 8) 
 Age [yrs] 20.33 ± 2.15 21.38 ± 2.45 19.63 ± 1.60** 23.13 ± 1.81 
 Height [m] 1.67 ± 0.08 1.78 ± 0.06 1.76 ± 0.06 1.80 ± 0.07 
 Mass [kg] 61.06 ± 5.87 78.64 ± 8.84 76.44 ± 5.80 80.84 ±11.08 
 𝑡10 [s] 2.11 ± 0.12 1.95 ± 0.16 1.83 ± 0.06** 2.07 ± 0.14 
 𝑡15 [s] 2.84 ± 0.18 2.62 ± 0.24 2.42 ± 0.05** 2.81 ± 0.18 
 𝑡20 [s] 3.53 ± 0.22 3.23 ± 0.30 2.97 ± 0.05** 3.48 ± 0.22 
 𝑡30 [s] 4.83 ± 0.35 4.38 ± 0.42 4.04 ± 0.06** 4.71 ± 0.33 
 𝑡40 [s] 6.14 ± 0.50 5.56 ± 0.58 5.07 ± 0.07** 6.05 ± 0.42 
 

 

Figure 5.2: Comparison of per step estimates of directional 𝑭 and 𝑅𝑅 between the IMU and photocell 
methods: (a.) 𝑅𝑅 and (b.) 𝑭. **Denotes a significant relationship at the 0.01 level. 
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Table 5.2: Comparison of performance variables estimated by the IMU and photocell method.   
  IMU       Photocell         
  Mean ± SD Mean ± SD 𝑡40 r Bias LOA RMSE r 

(IMU vs. Photo) 
 𝑅𝑅���� [%] 16.29 ± 3.26 15.72 ± 3.07 -0.93** 0.57 -2.62, 3.77 1.70 0.87** 
 𝐹�𝑥 [BW] 0.18 ± 0.04 0.18 ± 0.04 -0.93** 0.00 0.03, 0.04 0.02 0.89** 
 𝐹�𝑟𝑟𝑟 [BW] 1.03 ± 0.02 1.04 ± 0.01 -0.87** -0.01(0.99)* 0.97, 1.02 0.02 0.79** 
 𝑃�𝑥 [W/kg] 7.68 ± 2.68 7.88 ± 2.63 -0.95** -0.20 -2.95, 2.55 1.39 0.86** 
 𝑃𝑚𝑚𝑚 [W/kg] 14.18 ± 3.35 19.32 ± 4.99 -0.91** -5.14* -11.41, 1.13 6.02 0.78** 
 𝐹0 [N] 562.2 ± 172.7 652.2 ± 189.1 -0.59** -90.0* -315.8, 135.8 144.6 0.80** 
 𝑣0 [m/s] 8.75 ± 1.34 8.56 ± 1.11 -0.97** 0.19 -1.61, 1.99 0.92 0.73** 
 𝑠𝑠𝑠 [N/m/s] -65.2 ± 21.90 -76.22 ± 21.06 0.12 11.01* -21.15, 43.17 19.51 0.71** 
 𝑑𝑑𝑑 [%/m/s] -7.85 ± 1.96 -9.49 ± 1.41 -0.32 1.64* -2.36, 5.65 2.59 0.30 
*,**Denotes significance at the 0.05 and 0.01 level respectively. Bold lettering denotes antilog of 
natural logarithm transformed data due to non-normality. , 𝑡40 r: relationship between each variable 
and performance (40 m time), LOA: Bland-Altman 95% limits of agreement, RMSE: root mean square 
error of IMU estimate, r: Pearson product moment correlation between IMU and photocell estimate of 
each variable. 
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Discussion 

 The results from this study suggest the proposed IMU method can accurately estimate 

those performance variables that were most important to determining sprint performance.  The 

IMU estimates showed a systematic bias for five of the nine performance variables.  However, 

those four for which it did consistently provide an accurate estimate (𝑅𝑅����, 𝐹�𝑥, 𝑃�𝑥, and 𝑣0), were 

the most relevant to differentiating sprint performance (i.e., given the relationship with 𝑡40 

determined by the reference method).  In addition to an insignificant bias, the validity of the IMU 

estimate for these four variables is further supported by narrow LOA, low RMSE, and significant 

correlation coefficients (Table 5.2 and Figure 5.3).  Of the other five performance variables, only 

𝐹�𝑟𝑟𝑟 and 𝑃𝑚𝑚𝑚 showed strong relationships with sprint performance.  Even though the proposed 

IMU method showed a systematic bias in the estimate of these two variables, they did show 

strong, significant relationships (p < 0.01, r = 0.79 and 0.78 respectively) with estimates from the 

photocell method.  This suggests the proposed method may be able to detect changes in these 

parameters between sprints or subjects equally as well as the reference method.  The other three 

variables were 𝐹0, 𝑠𝑠𝑠, and 𝑑𝑑𝑑.  Our results suggest these were the least relevant to evaluating 

sprint performance.  First, they were the only variables whose correlation with 𝑡40 was less than 

r = 0.70.  Second, the S and NS groups were significantly different (p < 0.05) only for the other 

six variables, but not 𝐹0, 𝑠𝑠𝑠, and 𝑑𝑑𝑑.  The significant difference between groups was found 

given estimates of performance variables from both methods.  This suggests the IMU method 

can differentiate performance between sprinters and non-sprinters equally as well as the 

photocell method. Of these three variables, the best predictor of sprint performance was 𝐹0 

(relationship with 𝑡40: r = -0.59) of which the IMU estimate showed a strong, significant 

relationship with the photocell estimate (r = 0.80, p < 0.01).  The other two (𝑠𝑠𝑠 and 𝑑𝑑𝑑) 
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showed at the most fair and insignificant relationships with 𝑡40 (r = 0.12 and r = -0.32 

respectively). 

 Our finding that 𝑅𝑅����, 𝐹�𝑥, and 𝑃�𝑥 are the most relevant kinetic parameters in differentiating 

sprint performance is also supported by the results reported by Rabita et al. (2015) [2].  They 

assessed differences in elite and sub-elite sprinters using the same (and more) sprint performance 

variables as those used in this study with the exception of 𝑠𝑠𝑠.  Also in accordance with our 

findings was that 𝑑𝑑𝑑 was not very effective in differentiating sprint performance.  In their 

study, the effect size of the difference between the 𝑑𝑑𝑑 capabilities of elite and sub-elite 

sprinters was the fifth lowest out of fourteen kinetic parameters assessed and the correlations to 

sprint performance were insignificant.  The differences in 𝑣0 between the elite and sub-elite 

sprinters had an even lower effect size than 𝑑𝑑𝑑, which is contrary to the findings of our study.  

This may be due to the differences in the populations being compared.  The split times of our 

collegiate level male sprinter group suggest they are somewhere between the elite and sub-elite 

sprinters they tested, but closer to the elite.  It may be the case that 𝑣0 is too similar between 

skilled sprinters in general and that other measures are necessary to distinguish performance at 

these higher levels.  In contrast, it may be argued that the superior sprint capabilities of skilled 

sprinters would be expected to result in them having higher 𝑣0 compared to non-sprinters; a 

conclusion supported by our data.  Although the effect sizes of 𝑣0 were negligible comparing the 

elite and sub-elite sprinters in the study by Rabita et al., it was significantly correlated to sprint 

performance which is in agreement with the results from this study.  Similar findings were found 

in the study by Morin et al. (2012) where 𝑣0 showed strong relationships with sprint performance 

given a subject sample of much more varied levels of sprint ability [3].   
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In addition to Rabita et al. [2], other studies suggest similar conclusions concerning the 

importance of 𝑅𝑅����, 𝐹�𝑥, and 𝑃�𝑥 in discerning sprint acceleration performance [3, 5].  However, 

contrary to our data and that of Rabita et al., others have found 𝑑𝑑𝑑 to be a strong predictor of 

performance [3, 5].  This could be due to differences in how sprint performance was quantified.  

Our index was 𝑡40 whereas the authors in [3, 5] used maximal speed, mean speed, and four-

second distance during a 100 m sprint.  An argument can be made for the expectation that a less 

negative 𝑑𝑑𝑑 would characterize better sprinters.  As sprint velocity increases, the backward 

velocity of the stance leg before foot contact would need to also increase in order to prevent 

unwanted negative braking forces [8].  This would suggest faster shortening velocities of the leg 

musculature.  Consequently, the force generating capabilities would be expected to be 

diminished due to the force-velocity property of muscle [13, 139].  With lesser ability to generate 

force, the direction of 𝑭 must be directed more vertically such that the observed decrement does 

not result in an insufficient vertical impulse (and therefore flight time) necessary to optimally 

reposition the leg for the next foot contact [8].  In addition to the decrement due to the force-

velocity property of muscle, this vertical impulse may also be diminished because of a lesser 

contact time at increasing velocities [2, 145, 146].  For these reasons, 𝑑𝑑𝑑 (and 𝑠𝑠𝑠 for that 

matter) would be expected to be appropriate indices of sprint performance.  In theory, they 

indicate the maintenance of optimal technique as sprint velocity increases.  It is unclear why 

neither the photocell method nor the IMU method did not show significant differences between 

the S and NS groups for these variables.  It is worth noting, however, that the difference in 𝑑𝑑𝑑 

between the S and NS groups was more noticeable given the estimates from the IMU method 

(26% greater in S compared to NS) compared to the photocell method (only 8% greater in S 

compared to NS) and the difference approached significance in the IMU estimate (p = 0.057), 
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but not in the photocell method (p = 0.304).  The same was true for 𝑠𝑠𝑠 where the differences 

between S and NS groups were more noticeable in the IMU estimates (24%) compared to the 

reference photocell method (8%). 

 Step by step estimates of 𝑅𝑅, 𝐹𝑥, 𝐹𝑧, and 𝐹𝑟𝑟𝑟 made by the IMU showed moderate to 

strong and significant (p < 0.01) relationships with the reference photocell method (r = 0.91, r = 

0.88, r = 0.70, and r = 0.73 respectively).  Visual inspection of these relationships provides some 

insight into understanding potential sources of error.  The photocell method of predicting 𝑭 is 

dependent upon the prediction of COM acceleration in eq. (5.3).  For all values of 𝑡 in eq. (5.3), 

the acceleration is positive.  Thus, due to its macroscopic nature, the model is incapable of 

detecting a negative braking force.  For longer sprints well past the acceleration phase, a bi-

exponential equation may be more appropriate for its ability to estimate decreasing velocity later 

in the sprint [48].  However, even in a 40 m sprint, it is possible that a single step could have a 

net negative value.  Figures 5.2 and 5.4 show the IMU method did predict several of these 

instances.  These values appear to occur near the end of the sprint where a negative braking force 

may be expected, especially in unskilled sprinters.  A direct comparison to a force plate is 

necessary to delineate the true error in the IMU estimate for these values. 

From Figure 5.4 it is evident that the IMU values appear scattered about the photocell 

estimate similar to what was observed for force plate values in the original validation study for 

the photocell method [14].  However, when comparing our IMU vs. photocell curves to the force 

plate vs. photocell curves provided by Samozino et al. [14], the scattering of IMU estimates 

appears more drastic.  This may explain the finding of wide LOA in the IMU estimate of per step 

force values, but with a low bias.  Samozino et al. [14] did not perform the Bland-Altman 

analysis on per step variables, but only for variables over the entire sprint.  Thus, it is unknown 
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how these LOA compare to that which describe photocell estimates compared to the gold 

standard force plate.  The scattering of IMU estimates about the true value is of less concern 

once the values are averaged over the entire sprint.  This explains the finding of low bias for per 

step variables and most per sprint variables.  Samozino et al. [14] suggest inter-step variability as 

a potential causal factor underlying the observed scattering of force values between subsequent 

steps.  One drawback of the photocell method, therefore, is that it is not able to detect bilateral 

asymmetries.  The IMU method likely can detect these differences, but the difference appears to 

be exaggerated.  This may be due to an inaccurate determination of foot contacts.  This would 

result in an inappropriate averaging window within which IMU estimates would then be either 

under or overestimated.  If this is the case, a potential compensation for this observed error may 

be to average force estimates over two steps instead of one, but at the expense of the ability to 

detect inter-step differences.  This should be the focus of future research. 

 The proposed IMU method to assess sprint performance is a combination of those 

described in Chapters 3 and 4.  Those IMU-based methods provide estimates of 3-dimensional 

step averaged 𝑭 and estimates of sprint velocity respectively.  Each were subject to their own 

limitations and, therefore, also describe limitations inherent in the method proposed here.  

Namely, the IMU has no means to estimate limb movements relative to the point of IMU 

attachment at the sacral region.  These limb displacements result in COM displacements which 

the IMU cannot immediately detect.  However, averaging over the interval between subsequent 

foot contacts may overcome this problem.  This then requires an accurate detection of foot 

contact events.  Any inaccuracies in these estimates will result in an over or underestimate of the 

desired value.  Also, the IMU is radially displaced from the true COM location.  Thus, rotation 

of the body about an axis through the true COM manifests itself in the IMU frame as a linear 
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acceleration which will corrupt kinetic estimates.  Finally, the velocity filtering algorithm 

described in Chapter 4 is only appropriate for sprints along a straight line less than or equal to 40 

m and undertaken in a non-fatigued state. 

Conclusion 

 Recent research efforts in sprint acceleration mechanics and the development of field-

based assessment methodologies have made notable progress [138].  In fields other than 

specifically sprint acceleration ability, IMUs have also proven to be especially useful in both 

kinematic and kinetic analyses of human movement [18, 147].  Compared to other sprint 

assessment technologies, IMUs are small, low cost, do not affect the user’s movement, do not 

restrict the movement to a specific area, and show the potential to provide a more comprehensive 

assessment.  Chapter 3 suggests the criterion validity of 𝑅𝑅 and sagittal plane step-averaged 𝑭 

estimates in the sprint start from a single IMU.  Chapter 4 suggests the validity of a novel 

filtering algorithm to estimate maximal, instantaneous, and average interval velocity also from a 

single IMU.  This study built upon those two to show the validity of an IMU-based method to 

provide valid estimates of those kinetic parameters most important to sprint acceleration 

performance.  Future research should focus on improving the scope of the assessment by 

including other parameters (e.g., step frequency, joint angles, etc.) as well as novel ways to 

improve IMU estimates of 𝑭 and velocity during sprinting.  Potential methods worth 

investigating involve using additional IMUs to estimate limb movement to improve 𝑭 estimates, 

onboard GPS to improve velocity estimates outdoors and for longer sprints, and ways to 

compensate for the radial displacement of the IMU from the true COM location.
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Chapter 6: Conclusion and Future Directions 

Recent research efforts have improved IMU-based methodologies for use in 

biomechanics applications.  These improvements allow unrestricted field-based performance 

assessments which could lead to their more frequent use by coaches and practitioners outside of 

traditional laboratory settings.  The objective of this thesis was to investigate the use of IMUs to 

perform kinetic analyses of accelerative running tasks and specifically the acceleration phase of 

sprint running.  Chapter 3 described an IMU-only method of estimating 3-dimensional ground 

reaction force and the comparison of those estimate to the gold standard force plate.  Peak and 

instantaneous force estimates from the IMU method were inaccurate, but step-average, sagittal 

plane values during the linear standing sprint start task and the orientation of the vector were 

considered valid by comparison to the force plate.  The finding that the IMU method accurately 

estimated the ratio of force was especially promising in the context of assessing sprint 

acceleration performance.  Chapter 4 described a novel IMU-only based method of estimating 

sprint velocity.  The method was validated against a photocell method for maximal velocity, 

average interval velocity, and instantaneous velocity.  The estimates were characterized by 

significant correlations with photocell estimates and absolute percent difference less than 8%.  

Chapter 5 described an IMU-only based method of estimating sprint acceleration performance 

variables.  The method builds on those described in Chapters 3 and 4 and was compared to a 

recently validated photocell method.  The IMU method was shown to provide valid estimates of 

those sprint acceleration performance variables that were most important to sprint performance.  

Further, the IMU method differentiated sprinters from non-sprinters equally as well as the 

photocell method. 
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The methods described in all of these studies use a single IMU attached at the lower 

back.  More accurate estimates may have been found if multiple IMUs or other external 

measurement systems were incorporated, however, in this study, a single IMU is used such that 

the method would be easy to use and low cost.  In each study, potential error sources are 

described that may be used to direct future research.  Ultimately, whoever finishes the race first 

is all that matters and thus, arguably the most important sprint acceleration performance variable 

is the final sprint time.  The IMU method described in Chapter 4 overestimated the final sprint 

time by 0.14 s on average.  This may be too large for a coach to be willing to remove the use of 

photocells or some other timing system.  Combining an accurate timing system with the 

proposed IMU method to estimate the other kinetic performance variables may allow the coach 

to best determine the weaknesses of the athlete to then target in training.  Of course, if a timing 

system is going to be used, one could simply use the photocell method and no IMU at all.  On the 

other hand, fusion of IMU data and photocell data may provide an even more robust evaluation 

system.  In this context, a single photocell or a simple handheld timer (resources a coach may 

likely already have) may be used to estimate final sprint time and then provide an external 

measurement to later correct the IMU estimate.  An IMU-based method may also provide the 

means to perform a more comprehensive sprint assessment for its ability to potentially estimate 

other parameters important to sprint performance.  For example, although not directly assessed in 

the study of Chapter 5, it was possible to estimate average step frequency using the IMU which 

was significantly correlated with 𝑡40 (r = -0.73) and also significantly different (p < 0.05) 

between the sprinters (step frequency: 4.58 ± 0.29 Hz) and non-sprinters (4.18 ± 0.31 Hz).  IMUs 

may also be used to estimate joint angles such as trunk lean [22, 99] which has been shown to be 

a determinant of acceleration ability [9].  For example, although not directly assessed in Chapter 
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5, it was possible to estimate hip rotation angles and forward trunk lean during the sprint.  The 

latter showed significant correlations with both 𝑅𝑅 (r = 0.90) and 𝐹𝑥 (r = 0.89).  Thus, one might 

expect the decreasing trend of 𝑅𝑅 with velocity to be related to trunk lean.  Indeed, it was found 

that one could use the slope of the linear relationship between trunk lean and velocity (similar to 

𝑑𝑑𝑑 but with trunk lean instead of 𝑅𝑅) as an index of the sprinter’s ability to maintain forward 

trunk lean with increasing velocity.  Results from a t-test suggest the sprinter group maintained a 

significantly (p < 0.05) less negative trend (-6.12 °/m/s) compared to the non-sprinter group (-

7.85 °/m/s).  The use of IMUs for these purposes should be the focus of future research as well as 

novel ways to improve IMU estimates of ground reaction force and velocity during sprinting.
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Appendix A: Quaternion Notation and Vector Rotations 

For the studies described in Chapters 3 – 4, the anatomical frame (𝐹𝐴), inertial world 

frame (𝐹𝑤) (i.e the force plate frame in Chapter 3 and the track frame in Chapters 4 and 5), and 

sensor frame (𝐹𝑆) are all right-handed and defined by the following axes (see Figure 4.1): 𝑥� 

(anterior-posterior with the positive direction pointing forward), 𝑦� (medial-lateral with the 

positive direction pointing left), and 𝑧̂ (up-down with the positive direction pointing up).  

Vectors are denoted with bold lettering and the coordinate frame in which it is being referenced 

is given as a superscript (e.g., 𝒖𝑖
𝑗 refers to vector 𝒖𝑖 measured in frame 𝑗).  Finally, an a priori 

estimate of some variable u is denoted with the superscript 𝑢−.   

Any two unaligned frames may be aligned by a single rotation through an angle 𝛾 about 

an axis 𝑼 (Figure 4.1) [136].  The quaternion (𝑄𝛾) describing this orientation may be constructed 

using 𝛾 and 𝑼 (given that 𝑼 is of unit length) by [136]:  

 

𝑄𝛾 = [𝑞0 𝑞1 𝑞2 𝑞3]𝑇 = �
𝑐𝑐𝑐 �

𝛾
2
�

𝑠𝑠𝑠 �
𝛾
2
�𝑼

� 
(A.1) 

where 𝑞0 = 𝑐𝑐𝑐 �𝛾
2
� is called the scalar part of the quaternion, [𝑞1 𝑞2 𝑞3]𝑇 = 𝑠𝑠𝑠 �𝛾

2
�𝑼 is called 

the vector part of the quaternion (denoted by 𝒒𝑣), and the superscript 𝑇 denotes the transpose 

operator.  The quaternion product of any two quaternions, say 𝐿 and 𝑃 (denoted by 𝐿 ⊗ 𝑃), is 

defined as [136]: 

 𝐿 = [𝑙0 𝒍𝑣]𝑇 

𝑃 = [𝑝0 𝒑𝑣]𝑇 

𝐿 ⊗ 𝑃 = 𝑙0𝑝0 − 𝒍𝑣 ∙ 𝒑𝑣 + 𝑝0𝒍𝑣 + 𝑞0𝒍𝑣 + 𝒍𝑣 × 𝒑𝑣. 

(A.2) 

where ∙ and × represent the scalar and cross products respectively.  If 𝑄𝛾 represents the 

orientation of  𝐹𝑆 relative to 𝐹𝑤 (that is if the axis and angle of 𝑄𝛾 describe the composite rotation 
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that would align 𝐹𝑤 with 𝐹𝑆), then any arbitrary vector measured in 𝐹𝑆 (𝒖𝑆) may be expressed in 

terms of 𝐹𝑤 (𝒖𝑤) by rotating 𝐹𝑆 to be aligned with 𝐹𝑤 according to [136]: 

 𝒖𝑤 = 𝑄𝛾 ⊗ 𝒖𝑆 ⊗ 𝑄𝛾∗  (A.3) 

where 𝑄𝛾∗ is the quaternion conjugate defined by 𝑄𝛾∗ = [𝑞0 −𝒒𝑣]𝑇 [136].  The rotation of 𝒖𝑆 to 

𝒖𝑤 by 𝑄𝛾  is the result in eq. (A.3) only if 𝑄𝛾 is of unit length, which is the case as long as the 

axis of rotation used to construct 𝑄𝛾 , 𝑼 in eq. (A.1), is a unit vector [136].  The quaternion may 

be used to parametrize a rotation matrix (𝑅), the construction of which is derived from eqs. (A.2) 

and (A.3).  All vector rotations were performed using 𝑅 according to [20, 136]: 

 𝒖𝑤 = 𝑅𝒖𝑆  (A.4) 

where: 

 

𝑅 = �
𝑞02 + 𝑞𝑥2 − 𝑞𝑦2 − 𝑞𝑧2 2(𝑞𝑥𝑞𝑦 − 𝑞𝑧𝑞0) 2(𝑞𝑥𝑞𝑧 + 𝑞𝑦𝑞0)

2(𝑞𝑥𝑞𝑦 + 𝑞𝑧𝑞0) 𝑞02 − 𝑞𝑥2 + 𝑞𝑦2 − 𝑞𝑧2 2(𝑞𝑦𝑞𝑧 − 𝑞𝑥𝑞0)
2(𝑞𝑥𝑞𝑧 − 𝑞𝑦𝑞0) 2(𝑞𝑦𝑞𝑧 + 𝑞𝑥𝑞0) 𝑞02 − 𝑞𝑥2 − 𝑞𝑦2 + 𝑞𝑧2

� 
(A.5) 

Instead of describing the orientation according to the single composite rotation 𝑄𝛾, one may also 

consider the following two successive rotations: first through an angle 𝛼 about the 𝐹𝑤 vertical 

axis (𝑧̂𝑤 = [0 0 1]𝑇) (denoted by 𝑄𝛼) followed by a second rotation through an angle 𝛽 about an 

axis of unit length (𝑯) in the 𝐹𝑤 horizontal plane (denoted by 𝑄𝛽) such that: 

 

𝑄𝛼 = �
𝑐𝑐𝑐 �

𝛼
2
�

𝑠𝑠𝑠 �
𝛼
2
� 𝑧̂𝑤

� 
(A.6) 

and: 

 

𝑄𝛽 = �
𝑐𝑐𝑐 �

𝛽
2
�

𝑠𝑠𝑠 �
𝛽
2
�𝑯

� 

(A.7) 
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Then 𝛼 represents the IMU heading (angular deviation of the 𝐹𝑆 and 𝐹𝑤 horizontal plane axes 

when their vertical axes are aligned) and 𝛽 represents the IMU attitude (angular deviation of the 

𝐹𝑆 and 𝐹𝑤 vertical axes).  The composite quaternion 𝑄𝛾 is related to 𝑄𝛼 and 𝑄𝛽 by [136]: 

 𝑄𝛾 = 𝑄𝛼 ⊗ 𝑄𝛽    (A.8) 

The first estimate of the IMU orientation during the sprint is obtained by strapdown integration 

of the gyroscope angular rate signal starting from some initial orientation.  Measurements during 

a static interval from the IMU magnetometer and accelerometer provide an estimate of the initial 

IMU heading and attitude respectively and thus the initial conditions from which gyroscope 

integration may begin.  First, the accelerometer measurement of the gravity vector, which 

represents the coordinates of the 𝐹𝑤 vertical axis in the IMU frame (𝑧̂𝑤𝑆 ), is used to determine the 

IMU attitude 𝛽 by [93]: 

 𝛽 = acos (𝑧̂𝑤𝑆 ) (A.9) 

According to eq. (A.7), if one knows the axis 𝑯 in the horizontal plane about which the sensor 

may have been rotated to assume this attitude, one can determine the quaternion 𝑄𝛽.  This axis 𝑯 

lies orthogonal to the plane defined by 𝑧̂𝑤𝑆  and 𝑧̂𝑤𝑆  and is thus given by the cross product [93]: 

 
𝑯 =

𝑧̂𝑤𝑆 × 𝑧̂𝑠𝑆

�𝑧̂𝑤𝑆 × 𝑧̂𝑠𝑆�
 

(A.10) 

The normalization in eq. (A.10) is necessary to make the quaternion 𝑄𝛽 of unit length.  The local 

magnetic field vector (𝑩) can be used to estimate the heading of the IMU because 𝑩 has a 

component in the horizontal plane of 𝐹𝑤 [23].  First, the rotation matrix 𝑅𝛽 constructed using the 

quaternion 𝑄𝛽 as in eq. (A.5) rotates the measurement of 𝑩 in 𝐹𝑆 (𝑩𝑆) to the horizontal plane 

(𝑩𝐻) according to: 

 𝑩𝐻 = 𝑅𝛽 𝑩𝑆 (A.11) 
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The 𝑥 and 𝑦 components of 𝑩𝐻  (𝐵𝐻,𝑥 and 𝐵𝐻,𝑦 respectively) then allow the determination of the 

IMU heading (𝛼) relative to 𝑩𝐻 by [23]: 

 
𝛼 = −𝑎𝑎𝑎𝑎2�

𝐵𝐻,𝑦 
𝐵𝐻,𝑥

� 
(A.12) 

where 𝑎𝑎𝑎𝑎2 returns the four-quadrant inverse tangent [106].  By eq. (A.6) and because eq. 

(A.12) provides the initial IMU heading estimate 𝛼, one may construct the quaternion 𝑄𝛼.  Then, 

because the quaternions 𝑄𝛼 and 𝑄𝛽 are known, one may estimate the initial IMU orientation at 

the beginning of the movement (i.e., the quaternion 𝑄𝛾) according to eq. (A.8).  The estimate of 

the orientation at each instant 𝑘 (𝑄𝛾,𝑘) during the movement is computed using the IMU 

gyroscope signal.  The IMU’s angular rate vector (𝝎𝑆
𝑆) along with the time differential (𝑑𝑑) 

between two instants 𝑘 and 𝑘 + 1 (𝑑𝑑 = 𝑡𝑘+1 − 𝑡𝑘) may be used to construct the incremental 

quaternion 𝑇𝑘 that brings the IMU from the orientation at one instant (𝑄𝛾,𝑘) to the next (𝑄𝛾,𝑘+1)  

by [20, 136]: 

 

𝑇𝑘 = �
cos ��𝝎𝑆

𝑆�𝑑𝑑
2

�

𝑠𝑠𝑠 ��𝝎𝑆
𝑆�𝑑𝑑
2

� 𝝎𝑆
𝑆

�𝝎𝑆
𝑆�

�  

𝑄𝛾,𝑘+1 = 𝑄𝛾,𝑘  ⊗𝑇𝑘. 

(A.13) 

This provides an initial estimate of the IMU orientation throughout the entire movement.
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Appendix B: Decomposition of Composite Quaternion 

In Chapter 4, the first correction on the IMU estimate was given by assumption (I.); the 

heading of the runner (𝛼) throughout the entire sprint should be mean 0.  The first estimate of 

the quaternion, obtained by direct integration (see Appendix A), at any instant 𝑘 during the sprint 

(𝑄𝛾,𝑘
− ) is decomposed into two quaternions,  𝑄𝛽,𝑘 and 𝑄𝛼,𝑘

− , such that 𝑄𝛾,𝑘
−  is given by their 

quaternion product as shown in eq. (B.2).  The derivation of the general decomposition may be 

found in [136] and will be given here in the context of utilizing the correction of assumption (I.).  

Let: 

 

𝑄𝛽 =  𝑏0 + 𝑏1𝚤̂+ 𝑏2𝚥̂+ 𝑏3𝑘� = �
𝑐𝑐𝑐 �

𝛽
2
�

𝑠𝑠𝑠 �
𝛽
2
�𝑯

� 

𝑄𝛼− = 𝑎0 + 𝑎1𝚤̂+ 𝑎2𝚥̂ + 𝑎3𝑘� = �
𝑐𝑐𝑐 �𝛼

−

2
�

𝑠𝑠𝑠 �𝛼
−

2
� 𝑧̂𝒘

�    

𝑄𝛾− = 𝑄𝛼− ⊗𝑄𝛽 = 𝑞0 + 𝑞1𝚤̂+ 𝑞2𝚥̂+ 𝑞3𝑘� = �
𝑐𝑐𝑐 �

𝛾−

2
�

𝑠𝑠𝑠 �
𝛾−

2
�𝑼

� 

(B.1) 

Recall that 𝑄𝛽 has an axis of rotation (𝑯) in the horizontal plane (∴ 𝑏3 = 0) and that of 𝑄𝛼− is the 

vertical axis of 𝐹𝑇  (𝑧̂𝑻) (∴ 𝑎1,𝑎2 = 0).  Thus: 

 𝑄𝛽 =  𝑏0 + 𝑏1𝚤̂+ 𝑏2𝚥 ̂

𝑄𝛼− = 𝑎0 + 𝑎3𝑘�      

(B.2) 

The quaternion product yields: 

 𝑄𝛼− ⊗ 𝑄𝛽 = 𝑎0𝑏0 + (𝑎0𝑏1 − 𝑏2𝑎3)𝚤̂+ (𝑎0𝑏2 + 𝑏1𝑎3)𝚥̂+ (𝑏0𝑎3)𝑘�    (B.3) 
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and thus by eqs. (B.1) and (B.3): 

 𝑞0 = 𝑎0𝑏0 

   𝑞1 = 𝑎0𝑏1 − 𝑏2𝑎3 

𝑞2 = 𝑎0𝑏2 + 𝑏1𝑎3 

𝑞3 = 𝑏0𝑎3 

(B.4) 

or in matrix form: 

 �
𝑞0
𝑞3� = 𝐴 �𝑏00 � 

�
𝑞1
𝑞2� = 𝐴 �𝑏1𝑏2

� 

𝐴 = �
𝑎0 −𝑎3
𝑎3 𝑎0 �. 

(B.5) 

The inverse of 𝐴 is its transpose and thus: 

 �𝑏00 � = �
𝑎0 𝑎3
−𝑎3 𝑎0� �

𝑞0
𝑞3� 

�𝑏1𝑏2
� = �

𝑎0 𝑎3
−𝑎3 𝑎0� �

𝑞1
𝑞2� 

(B.6) 

which gives: 

 𝑏0 = 𝑎0𝑞0 + 𝑞3𝑎3 

   0 = −𝑞0𝑎3 + 𝑞3𝑎0 

𝑏1 = 𝑎0𝑞1 + 𝑎3𝑞2 

𝑏2 = −𝑞1𝑎3 + 𝑞2𝑎0 

(B.7) 

Because 𝑄𝛼− describes a rotation through an angle 𝛼−about the 𝐹𝑇 vertical axis, the scalar part 

(𝑎0) and vector part (in this case 𝑎3) are: 

 𝑎0 = 𝑐𝑐𝑐 �
𝛼−

2
� 

𝑎3 = 𝑠𝑠𝑠 �
𝛼−

2
� 

(B.8) 
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From eq. (B.7): 

 𝑞3
𝑞0

=
𝑎3
𝑎0

 (B.9) 

and because 𝑄𝛾− is given from direct integration, by substituting eq. (B.8) into eq. (B.9) one can 

solve for the unknown 𝛼−: 

 𝛼− = 𝑎𝑎𝑎𝑎 �
𝑞3
𝑞0
� (B.10) 

and also 𝑄𝛼− by eq. (B.1).  Then, by substituting eq. (B.10) and eq. (B.8) into eq. (B.7) one can 

obtain the unknowns 𝑏0, 𝑏1, and 𝑏2, which allows the construction of the quaternion 𝑄𝛽 by eq.  

(B.1).  Thus, given only the composite quaternion, one is able to derive the quaternions 

describing the heading and attitude of the IMU relative to the track frame.
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Appendix C: IMU Calibration 
 

Before data collection the accelerometer and magnetometer of the IMUs were calibrated 

according to a similar method used by Jurman et al. [23].  For the accelerometer, each sensor was 

placed in 24 different static orientations (four orientations differing by 90° rotations about the 

axis orthogonal to each of the six sides).  For each orientation, 450 samples were acquired (one 

second).  For the magnetometer, the sensor was rotated about each axis multiple times at a fixed 

location where the local magnetic field vector is constant for two minutes.  The IMU determined 

resultant normalized acceleration in each of the 24 static orientations (us) should be one, 

representative of the world frame reference value (𝑢𝑤) of gravity (1 g = 9.81 m/s2).  The 

normalized resultant magnetic field magnitude should also be one during the entire two-minute 

rotation trial for the magnetometer calibration, representative of the earth’s magnetic field.  The 

IMU vectors will be corrected by the bias vector (b), rotated by an orthogonalization matrix (O) 

to compensate for the non-orthogonality of the sensor axes, and scaled by the sensitivity matrix 

(C) before the resultant magnitude is determined according to the following: 

 

where 𝛼𝑖𝑖 is the angle between the ith and jth axes of the internal sensor, ci is the scaling factor for 

the ith axis, and bi is the magnitude of bias for the ith axis.  The mean square error between 𝑢𝑠 and  

 

 𝑢𝑠 = ‖𝐶 ∙ 𝑂 ∙ (𝒖𝑤 − 𝒃)‖ (C.1) 

 
𝑂 = �

1 0 0
cos (𝛼𝑥𝑥) 1 cos (𝛼𝑧𝑧)
cos (𝛼𝑥𝑥) cos (𝛼𝑦𝑦) 1

�, 𝐶 =  �
𝑐𝑥 0 0
0 𝑐𝑦 0
0 0 𝑐𝑧

�, 𝒃 = �
𝑏𝑥
𝑏𝑦
𝑏𝑧
� 
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𝑢𝑤 for each orientation will serve as the objective function (M) to be minimized: 

 

The parameters of O, C, and b will be determined by unconstrained minimization of M.  The 

initial guess for the parameters will be chosen such that O and C are both the 3x3 identity matrix 

and b is the zero vector. 

 Three Yost IMUs (Yost01, Yost02, Yost03) were used in the studies described in 

Chapters 3, 4, and 5.  The results of the calibration trials are shown below.  

Table C.1: Accelerometer and magnetometer calibration parameters for IMU Yost01 

  Accelerometer Magnetometer 
 𝑐𝑥 1.0123 0.9836 
 𝑐𝑦 0.9856 1.0025 
 𝑐𝑧 0.9851 1.0386 

 𝛼𝑥𝑥  90.5032 89.8065 
𝛼𝑧𝑦 91.0358 90.0603 
𝛼𝑥𝑥 96.6318 92.3539 
𝛼𝑦𝑦 91.0358 90.0603 
𝑏𝑥 0.0002 -0.0142 
𝑏𝑦 -0.0248 -0.029 
𝑏𝑧 -0.0567 -0.012 

 

 
𝑀 =

1
𝑛
�(𝑢𝑤 − 𝑢𝑖𝑠)2
𝑛

𝑖=1

 
(C.2) 



119 
 

 
Figure C.1: Calibration of Yost01 accelerometer.  The blue line is uncalibrated acceleration and the orange line is calibrated. The 

correct value should be one. 

 

 
Figure C.2: Calibration of Yost01 magnetometer. The blue line is uncalibrated magnetometer output and the orange line is 

calibrated. The correct value should be one. 

 
Table C.2: Accelerometer and magnetometer calibration parameters for IMU Yost02 

  Accelerometer Magnetometer 
 𝑐𝑥 0.9927 1.0101 
 𝑐𝑦 1.0074 1.0185 
 𝑐𝑧 1.0231 1.0252 

 𝛼𝑥𝑥  90 90.7202 
𝛼𝑧𝑦 90 88.9039 
𝛼𝑥𝑥 90 90.3579 
𝛼𝑦𝑦 90 88.9039 
𝑏𝑥 0.019 -0.0905 
𝑏𝑦 -0.0179 0.2285 
𝑏𝑧 -0.0338 -0.1544 

 



120 
 

 
Figure C.3: Calibration of Yost02 accelerometer. The blue line is uncalibrated acceleration and the orange line is calibrated. The 

correct value should be one. 

 

 
Figure C.4: Calibration of Yost02 magnetometer.  The blue line is uncalibrated magnetometer output and the orange line is 

calibrated. The correct value should be one. 
 
Table C.3: Accelerometer and magnetometer calibration parameters for IMU Yost03 

  Accelerometer Magnetometer 
 𝑐𝑥 0.9945 0.9808 
 𝑐𝑦 0.9865 1.0153 
 𝑐𝑧 0.9883 1.0268 

 𝛼𝑥𝑥  94.3797 91.825 
𝛼𝑧𝑦 88.8102 89.6357 
𝛼𝑥𝑥 95.5681 91.7819 
𝛼𝑦𝑦 88.8116 89.6356 
𝑏𝑥 -0.0017 -0.0169 
𝑏𝑦 0.0067 -0.0076 
𝑏𝑧 -0.0201 -0.0134 
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Figure C.5: Calibration of Yost03 accelerometer. The blue line is uncalibrated acceleration and the orange line is calibrated. The 

correct value should be one. 

 

 
Figure C.6: Calibration of Yost03 magnetometer.  The blue line is uncalibrated magnetometer output and the orange line is 

calibrated. The correct value should be one. 
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